Publication 6034

Hjorth A. & Wilensky U. (2019) Studying Conceptual Change in Classrooms: Using Association Rule Mining to Detect Changes in Students’ Explanations of the Effects of Urban Planning and Social Policy. Constructivist Foundations 14(3): 272–283. Fulltext at
Context: Conceptual developments in our understanding of knowledge are merging with machine-learning methods for making sense of data. This creates new, and interesting ways in which we can document and analyse knowledge, and conceptual change. Problem: Currently, the study of conceptual change is often limited to small sample sizes because of the laborious nature of existing, purely qualitative approaches. Method: We present Association Rule Mining to better measure and understand changes in students’ thinking at the classroom level, based on data collected while implementing a constructionist learning activity in a US college classroom. Association Rule Mining is used on a set of qualitatively coded student responses. We then look at changes in the association rules between students’ responses before and after a learning activity to better understand students’ conceptual change at the classroom level. Results: We find that students converge on a more complete and accurate set of causal claims in their post-responses. Finding these changes would have been difficult or impossible without Association Rule Mining, or a similar approach. This suggests that Association Rule Mining is a potentially fruitful approach to analysing conceptual change at the classroom level. Implications: Adding Association Rule Mining to the arsenal of computational qualitative methods will let us study student data of larger sizes than previously. Constructivist content: Association Rule Mining is agnostic with regard to the ontology of its data. This makes Association Rule Mining a particularly suitable analysis method when taking a constructivist view of learning


The publication has not yet bookmarked in any reading list

You cannot bookmark this publication into a reading list because you are not member of any
Log in to create one.

There are currently no annotations

To add an annotation you need to log in first

Download statistics

Log in to view the download statistics for this publication
Export bibliographic details as: CF Format · APA · BibTex · EndNote · Harvard · MLA · Nature · RIS · Science