Abbott M. L. & Fouts J. T. (2003) Constructivist teaching and student achievement: The results of a school level classroom observation study in Washington. Technical Report #5. Washington School Research Center, Lynnwood WA. https://cepa.info/4658
This study built on a 2001–02 classroom observation study of Washington K-12 and technical schools that identified the extent of constructivist teaching activity. Results from classroom observations found that strong constructivist teaching was observable in 17 percent of the classroom lessons. The other 83 percent of the lessons observed may have contained some elements of constructivist teaching, but up to one-half had very little or no elements of constructivist teaching present. More constructivist teaching appeared to occur in alternative schools and integrated subject matter classes. There appeared to be no differences among elementary, middle/junior, and high schools in the degree to which constructivist practices were used. This study explored the relationship of this practice to student achievement, examining the percent of variance in student achievement accounted for by constructivist teaching beyond that contributed by low-income. Data came from the original observation study and from school-level standardized test scores of 4th, 7th, and 10th graders. Results found large correlations between study variables (a negative correlation between school-level family income and student achievement, large positive correlations between constructivist teaching and student achievement, and a negative correlation between constructivist teaching and school-level family income).
Abdoli Sejzi A. & bin Aris B. (2012) Constructivist approach in virtual universities. Procedia – Social and Behavioral Sciences 56: 426–431. https://cepa.info/5865
This paper proposed the application of the constructivist approach in virtual university where learners can learn based on their learning style, information and skills to succeed in life and also in their job. Constructivist learning and the strategies in constructivist learning can foster in-depth learning and practical application. Integration of communication and information technologies into curricula offers significant potentials for designing new learning environments, and advancing research and development in learning theories. Based on the main aspects of the constructivist approach, traditional universities and classroom cannot provide the conditions for learners to construct the knowledge for themselves, for this reason virtual university with the communication and information technologies (ICT) can implement constructivist strategies in the process of teaching and learning. In virtual university, constructivism promotes the learner’s skills to solve real-life problems and practical problems.
Abrahamson D. (2009) Embodied design: Constructing means for constructing meaning. Educational Studies in Mathematics 70(1): 27–47. https://cepa.info/8084
Design-based research studies are conducted as iterative implementation-analysis-modification cycles, in which emerging theoretical models and pedagogically plausible activities are reciprocally tuned toward each other as a means of investigating conjectures pertaining to mechanisms underlying content teaching and learning. Yet this approach, even when resulting in empirically effective educational products, remains under-conceptualized as long as researchers cannot be explicit about their craft and specifically how data analyses inform design decisions. Consequentially, design decisions may appear arbitrary, design methodology is insufficiently documented for broad dissemination, and design practice is inadequately conversant with learning-sciences perspectives. One reason for this apparent under-theorizing, I propose, is that designers do not have appropriate constructs to formulate and reflect on their own intuitive responses to students’ observed interactions with the media under development. Recent socio-cultural explication of epistemic artifacts as semiotic means for mathematical learners to objectify presymbolic notions (e.g., Radford, Mathematical Thinking and Learning 5(1): 37–70, 2003) may offer design-based researchers intellectual perspectives and analytic tools for theorizing design improvements as responses to participants’ compromised attempts to build and communicate meaning with available media. By explaining these media as potential semiotic means for students to objectify their emerging understandings of mathematical ideas, designers, reciprocally, create semiotic means to objectify their own intuitive design decisions, as they build and improve these media. Examining three case studies of undergraduate students reasoning about a simple probability situation (binomial), I demonstrate how the semiotic approach illuminates the process and content of student reasoning and, so doing, explicates and possibly enhances design-based research methodology.
Abrahamson D. (2021) Grasp actually: An evolutionist argument for enactivist mathematics education. Human Development 65(2): 77–93. https://cepa.info/7084
What evolutionary account explains our capacity to reason mathematically? Identifying the biological provenance of mathematical thinking would bear on education, because we could then design learning environments that simulate ecologically authentic conditions for leveraging this universal phylogenetic inclination. The ancient mechanism coopted for mathematical activity, I propose, is our fundamental organismic capacity to improve our sensorimotor engagement with the environment by detecting, generating, and maintaining goal-oriented perceptual structures regulating action, whether actual or imaginary. As such, the phenomenology of grasping a mathematical notion is literally that – gripping the environment in a new way that promotes interaction. To argue for the plausibility of my thesis, I first survey embodiment literature to implicate cognition as constituted in perceptuomotor engagement. Then, I summarize findings from a design-based research project investigating relations between learning to move in new ways and learning to reason mathematically about these conceptual choreographies. As such, the project proposes educational implications of enactivist evolutionary biology.
Abrahamson D. & Lindgren R. (2014) Embodiment and embodied design. In: Sawyer R. K. (ed.) The Cambridge handbook of the learning sciences. Second edition. Cambridge University Press, Cambridge: 358–376. https://cepa.info/8085
Excerpt: The objective of this chapter is to outline the embodiment approach, explain how it contributes to our understanding of learning, and propose and exemplify how this understanding informs the design of STEM learning environments.
Abrahamson D. & Trninic D. (2015) Bringing forth mathematical concepts: Signifying sensorimotor enactment in fields of promoted action. ZDM Mathematics Education 47(2): 295–306. https://cepa.info/6129
Inspired by Enactivist philosophy yet in dialog with it, we ask what theory of embodied cognition might best serve in articulating implications of Enactivism for mathematics education. We offer a blend of Dynamical Systems Theory and Sociocultural Theory as an analytic lens on micro-processes of action-to-concept evolution. We also illustrate the methodological utility of design-research as an approach to such theory development. Building on constructs from ecological psychology, cultural anthropology, studies of motor-skill acquisition, and somatic awareness practices, we develop the notion of an “instrumented field of promoted action”. Children operating in this field first develop environmentally coupled motor-action coordinations. Next, we introduce into the field new artifacts. The children adopt the artifacts as frames of action and reference, yet in so doing they shift into disciplinary semiotic systems. We exemplify our thesis with two selected excerpts from our videography of Grade 4–6 volunteers participating in task-based clinical interviews centered on the Mathematical Imagery Trainer for Proportion. In particular, we present and analyze cases of either smooth or abrupt transformation in learners’ operatory schemes. We situate our design framework vis-à-vis seminal contributions to mathematics education research.
Abrahamson D., Dutton E. & Bakker A. (2021) Towards an enactivist mathematics pedagogy. In: Stolz S. A. (ed.) The body, embodiment, and education: An interdisciplinary approach. Routledge, New York: in press.
Enactivism theorizes thinking as situated doing. Mathematical thinking, specifically, is handling imaginary objects, and learning is coming to perceive objects and reflecting on this activity. Putting theory to practice, Abrahamson’s embodied-design collaborative interdisciplinary research program has been designing and evaluating interactive tablet applications centered on motor-control tasks whose perceptual solutions then form the basis for understanding mathematical ideas (e.g., proportion). Analysis of multimodal data of students’ hand- and eye- movement as well as their linguistic and gestural expressions has pointed to the key role of emergent perceptual structures that form the developmental interface between motor coordination and conceptual articulation. Through timely tutorial intervention or peer interaction, these perceptual structures rise to the students’ discursive consciousness as “things” they can describe, measure, analyze, model, and symbolize with culturally accepted words, diagrams, and signs – they become mathematical entities with enactive meanings. We explain the theoretical background of enactivist mathematics pedagogy, demonstrate its technological implementation, list its principles, and then present a case study of a mathematics teacher who applied her graduate-school experiences in enactivist inquiry to create spontaneous classroom activities promoting student insight into challenging concepts. Students’ enactment of coordinated movement forms gave rise to new perceptual structures modeled as mathematical content.
Abrahamson D., Nathan M. J., Williams-Pierce C., Walkington C., Ottmar E. R., Soto H. & Alibali M. W. (2020) The future of embodied design for mathematics teaching and learning. Frontiers in Education 5: 147. https://cepa.info/7086
A rising epistemological paradigm in the cognitive sciences – embodied cognition – has been stimulating innovative approaches, among educational researchers, to the design and analysis of STEM teaching and learning. The paradigm promotes theorizations of cognitive activity as grounded, or even constituted, in goal-oriented multimodal sensorimotor phenomenology. Conceptual learning, per these theories, could emanate from, or be triggered by, experiences of enacting or witnessing particular movement forms, even before these movements are explicitly signified as illustrating target content. Putting these theories to practice, new types of learning environments are being explored that utilize interactive technologies to initially foster student enactment of conceptually oriented movement forms and only then formalize these gestures and actions in disciplinary formats and language. In turn, new research instruments, such as multimodal learning analytics, now enable researchers to aggregate, integrate, model, and represent students’ physical movements, eye-gaze paths, and verbal–gestural utterance so as to track and evaluate emerging conceptual capacity. We – a cohort of cognitive scientists and design-based researchers of embodied mathematics – survey a set of empirically validated frameworks and principles for enhancing mathematics teaching and learning as dialogic multimodal activity, and we synthetize a set of principles for educational practice.
Ackermann E. K. (2001) Piaget’s constructivism, Papert’s constructionism: What’s the difference? Future of Learning Group Publication 5(3): 438.
In the drive to improve standards, the collection and dissemination of numerical data still directs much contemporary educational policy. However, recent publications and debates seemingly attempt to reorient discussion from performance to learning. In support, constructivism is often referenced as a contributor in this endeavour. However, constructivism is not a single unified theory either of knowledge or pedagogy. This article identifies one version of constructivist thinking, social constructivism, both in terms of its underlying epistemology (theory of knowledge) and related pedagogy. Contemporary educational theories are then outlined to demonstrate that many practical solutions and theoretical ideas now presented as ‘good learning and teaching’ have much in common with social constructivist thinking. Finally, the article concludes by identifying two issues that require further discussion and debate if pedagogy of a social constructivist nature is to be considered.