Questions concerning the nature and origin of living systems and the hierarchy of their evolutionary processes are considered, and several problems which arise in connection with formerly developed theories – the autopoiesis of Maturana & Varela, the POL theory of Haukioja and the earlier developed evolutionary theory of Csányi – are discussed. The organization of living systems, the use of informational terms and the question how reproduction can enter into their characterization, problems of autonomy and identity are included in the list. It is suggested that replication – a copying process achieved by a special network of interrelatedness of components and component-producing processes that produces the same network as that which produced them – characterizes the living organization. The information “used” in this copying process, whether it is stored by special means or distributed in the whole system, is called replicative information. A theoretical model is introduced for the spontaneous emergence of replicative organization, called autogenesis. Autogenesis commences in a system by an organized “small” subsystem, referred to as AutoGenetic System Precursor (AGSP), which conveys replicative information to the system. During autogenesis, replicative information increases in system and compartment(s) form. A compartment is the co-replicating totality of components. The end state of autogenesis is an invariantly self-replicating organization which is unable to undergo further intrinsic organizational changes. It is suggested that replicative unities – such as living organisms – evolve via autogenesis. Levels of evolution emerge as a consequence of the relative autonomy of the autogenetic unities. On the next level they can be considered as components endowed with functions and a new autogenetic process can commence. Thus evolution proceeds towards its end state through the parallel autogenesis of the various levels. In terms of applications, ontogenesis is dealt with in detail as an autogenetic process as is the autogenesis of the biosphere and the global system.
Kampis G. (1986) Biological information as a system description. In: Trappl R. (ed.) Cybernetics and Systems ’86. Reidel, Dordrecht: 39–46. https://cepa.info/6242
Excerpt: Information is not only a quantity, but is in a more intricate relationship to the system. I concentrate now on this relation, examining “What information?” instead of “How much information?” This is meaningful only if we want to get a proper description of the system. When speaking of information, I think of this description now.
Kampis G. (1995) Computability, self-reference, and self-amendment. Special Issue on Self-Reference in Biological and Cognitive Systems Communication and Cognition – Artificial Intelligence 12(1–2): 91–109. https://cepa.info/3082
There exist theories of cognition that assume the importance of self-referentiality and/or self-modification. We argue for the necessity of such considerations. We discuss basic concepts of self-reference and self-amendment, as well as their relationship to each other. Self-modification will be suggested to involve non-algorithmic mechanisms, and it will be developed as a primary concept from which self-reference derives. A biologically motivated mechanism for achieving both phenomena is outlined. Problems of computability are briefly discussed in connection with the definability and describability of self-modifying systems. Finally, the relevance of these problems to applications in semantic problems of cognition is shown. We proceed in the following way. The paper starts with an outline of the evolutionary approach to cognition, as that context where the problems of circularity and recursiveness can be raised. Next, complete and incomplete forms of self-references are discussed. The “causal” theory of self-referentiality is reviewed, and a thought experiment is presented, which points out that no computable model for complete self-reference can exist. On the other hand, constructive definitions are shown to offer a framework where “selfdefining” and self-modifying systems, if such exist in reality, can be formulated. Studying the realization problem, a general abstract model is given, and a “biological computation” mechanism that corresponds to it is outlined. The underlying phenomenon, called “shifting reading frame,” is discussed in relation to how self-referentiality can be achieved through self-modification. The applicability of the approach to the autonomous definition of semantic relations in symbol systems, that may allow for a kind of autonomous “symbol grounding,” is discussed.
Kampis G. (1995) The inside and outside views of life. In: Moran F., Moreno A., Merelo J. J. & Chaco P. (eds.) Advances in artificial life. Springer, Berlin: 95–102. https://cepa.info/3858
Abstract. Biology is, better than anything else, about existence in time. Hence biological reality cannot be defined without reference to a temporally situated observer. The coupled or detached character of this observer (with respect to the own time variable of the system) provides a link between the observer and the observed. This connections delimits the kinds of scientific descriptions that can be given at all by an observer. In particular, two fundamentally different forms of description, corresponding to different epistemological attitudes and different philosophies of science, called endo- and exo-physics, can be distinguished. Two old puzzles, the Omniscience Problem (illustrated here on the example of Internal Chemistry) and the Chameleon Problem (originally an argument against philosophical functionalism) are reconsidered in the light of these distinctions. As application, the question, in what sense computer models of life can be suitable for studying life, is examined.
Kampis G. & Csányi V. (1991) Life, self-reproduction and information: Beyond the machine metaphor. Journal of Theoretical Biology 148(1): 17–32.
The problem of representing information in automaton models of self-replication is considered. It is shown that, unlike in the natural reproduction process, in a computable model the reproduced entities do not contain all the information necessary for guiding the process. Current theoretical understanding of life and its replication, based on such models, is argued to be essentially inadequate. The solution to this problem is claimed to require recognition of the theoretical fact that information in living systems is different from that subsumed under the category of “knowledge”, which is representable as computer programs or triggers of state transitions. A discussion of fundamentals of a new theory of information and its relationship to replication models is given and a new direction of further developments of biological theories is envisioned.