Bruineberg J., Kiverstein J. & Rietveld E. (2018) The anticipating brain is not a scientist: The free-energy principle from an ecological-enactive perspective. Synthese 195(6): 2417–2444. https://cepa.info/4497
In this paper, we argue for a theoretical separation of the free-energy principle from Helmholtzian accounts of the predictive brain. The free-energy principle is a theoretical framework capturing the imperative for biological self-organization in information-theoretic terms. The free-energy principle has typically been connected with a Bayesian theory of predictive coding, and the latter is often taken to support a Helmholtzian theory of perception as unconscious inference. If our interpretation is right, however, a Helmholtzian view of perception is incompatible with Bayesian predictive coding under the free-energy principle. We argue that the free energy principle and the ecological and enactive approach to mind and life make for a much happier marriage of ideas. We make our argument based on three points. First we argue that the free energy principle applies to the whole animal–environment system, and not only to the brain. Second, we show that active inference, as understood by the free-energy principle, is incompatible with unconscious inference understood as analagous to scientific hypothesis-testing, the main tenet of a Helmholtzian view of perception. Third, we argue that the notion of inference at work in Bayesian predictive coding under the free-energy principle is too weak to support a Helmholtzian theory of perception. Taken together these points imply that the free energy principle is best understood in ecological and enactive terms set out in this paper.
Kiverstein J. & Miller M. (2015) The embodied brain: Towards a radical embodied cognitive neuroscience. Frontiers in Human Neuroscience 9: 237. https://cepa.info/2281
In this programmatic paper we explain why a radical embodied cognitive neuroscience is needed. We argue for such a claim based on problems that have arisen in cognitive neuroscience for the project of localizing function to specific brain structures. The problems come from research concerned with functional and structural connectivity that strongly suggests that the function a brain region serves is dynamic, and changes over time. We argue that in order to determine the function of a specific brain area, neuroscientists need to zoom out and look at the larger organism-environment system. We therefore argue that instead of looking to cognitive psychology for an analysis of psychological functions, cognitive neuroscience should look to an ecological dynamical psychology. A second aim of our paper is to develop an account of embodied cognition based on the inseparability of cognitive and emotional processing in the brain. We argue that emotions are best understood in terms of action readiness (Frijda, 1986, 2007) in the context of the organism’s ongoing skillful engagement with the environment (Rietveld, 2008; Bruineberg and Rietveld, 2014; Kiverstein and Rietveld, 2015, forthcoming). States of action readiness involve the whole living body of the organism, and are elicited by possibilities for action in the environment that matter to the organism. Since emotion and cognition are inseparable processes in the brain it follows that what is true of emotion is also true of cognition. Cognitive processes are likewise processes taking place in the whole living body of an organism as it engages with relevant possibilities for action.