Agmon E., Gates A. J., Churavy V. & Beer R. D. (2016) Exploring the space of viable configurations in a model of metabolism–boundary co-construction. Artificial Life 22(2): 153–171.
We introduce a spatial model of concentration dynamics that supports the emergence of spatiotemporal inhomogeneities that engage in metabolism–boundary co-construction. These configurations exhibit disintegration following some perturbations, and self-repair in response to others. We define robustness as a viable configuration’s tendency to return to its prior configuration in response to perturbations, and plasticity as a viable configuration’s tendency to change to other viable configurations. These properties are demonstrated and quantified in the model, allowing us to map a space of viable configurations and their possible transitions. Combining robustness and plasticity provides a measure of viability as the average expected survival time under ongoing perturbation, and allows us to measure how viability is affected as the configuration undergoes transitions. The framework introduced here is independent of the specific model we used, and is applicable for quantifying robustness, plasticity, and viability in any computational model of artificial life that demonstrates the conditions for viability that we promote.
Aguilar W., Santamaría-Bonfil G., Froese T. & Gershenson C. (2014) The past, present, and future of artificial life. Frontiers in Robotics and AI 1: 8. https://cepa.info/1125
For millennia people have wondered what makes the living different from the non-living. Beginning in the mid-1980s, artificial life has studied living systems using a synthetic approach: build life in order to understand it better, be it by means of software, hardware, or wetware. This review provides a summary of the advances that led to the development of artificial life, its current research topics, and open problems and opportunities. We classify artificial life research into 14 themes: origins of life, autonomy, self-organization, adaptation (including evolution, development, and learning), ecology, artificial societies, behavior, computational biology, artificial chemistries, information, living technology, art, and philosophy. Being interdisciplinary, artificial life seems to be losing its boundaries and merging with other fields. Relevance: Artificial life has contributed to philosophy of biology and of cognitive science, thus making it an important field related to constructivism.
Bertschinger N., Olbrich E., Ay N. & Jost J. (2008) Autonomy: An information theoretic perspective. BioSystems 91: 331–345.
We present a tentative proposal for a quantitative measure of autonomy. This is something that, surprisingly, is rarely found in the literature, even though autonomy is considered to be a basic concept in many disciplines, including artificial life. We work in an information theoretic setting for which the distinction between system and environment is the starting point. As a first measure for autonomy, we propose the conditional mutual information between consecutive states of the system conditioned on the history of the environment. This works well when the system cannot influence the environment at all and the environment does not interact synergetically with the system. When, in contrast, the system has full control over its environment, we should instead neglect the environment history and simply take the mutual information between consecutive system states as a measure of autonomy. In the case of mutual interaction between system and environment there remains an ambiguity regarding whether system or environment has caused observed correlations. If the interaction structure of the system is known, we define a “causal” autonomy measure which allows this ambiguity to be resolved. Synergetic interactions still pose a problem since in this case causation cannot be attributed to the system or the environment alone. Moreover, our analysis reveals some subtle facets of the concept of autonomy, in particular with respect to the seemingly innocent system–environment distinction we took for granted, and raises the issue of the attribution of control, i.e. the responsibility for observed effects. To further explore these issues, we evaluate our autonomy measure for simple automata, an agent moving in space, gliders in the game of life, and the tessellation automaton for autopoiesis of Varela et al.
Bich L. & Damiano L. (2007) Question 9: Theoretical and artificial construction of the living: Redefining the approach from an autopoietic point of view. Origins of Life and Evolution of Biospheres 37(4–5): 459–464. https://cepa.info/4560
In this article, we would like to discuss some aspects of a theoretical framework for Artificial Life, focusing on the problem of an explicit definition of living systems useful for an effective artificial construction of them. The limits of a descriptive approach will be critically discussed, and a constructive (synthetic) approach will be proposed on the basis of the autopoietic theory of Maturana and Varela.
Cariani P. (1993) To evolve an ear: Epistemological implications of Gordon Pask’s electrochemical devices. Systems Research 10(3): 19–33. https://cepa.info/2836
In the late 1950's Gordon Pask constructed several electrochemical devices having emergent sensory capabilities. These control systems possessed the ability to adaptively construct their own sensors, thereby choosing the relationship between their internal states and the world at large. Devices were built that evolved de novo sensitivity to sound or magnetic fields. Pask’s devices have far-reaching implications for artificial intelligence, self-constructing devices, theories of observers and epistemically-autonomous agents, theories of functional emergence, machine creativity, and the limits of contemporary machine learning paradigms.
Open peer commentary on the article “Exploration of the Functional Properties of Interaction: Computer Models and Pointers for Theory” by Etienne B. Roesch, Matthew Spencer, Slawomir J. Nasuto, Thomas Tanay & J. Mark Bishop. Upshot: Artificial life computer simulations hold the potential for demonstrating the kinds of bottom-up, cooperative, self-organizing processes that underlie the self-construction of observer-actors. This is a worthwhile, if limited, attempt to use such simulations to address this set of core constructivist concerns. Although we concur with much of the philosophical perspective in the target article, we take issue with some of the implied positions related to dynamical systems, sensorimotor contingency theory, and neural information processing. Ideally, we would like to see computational approaches more directly address adaptive, constructive processes and mechanisms operant in minds and brains. This would entail using tasks that are more relevant to the psychology of human and animal learning than performing digit sums or sorts. It also could involve relating the dynamics of agents more explicitly to ensembles of communicating neural assemblies.
Carneiro J. & Stewart J. (1995) Self and nonself revisited: Lessons from modelling the immune network. In: Moran F., Moreno A., Merelo J. J. & Chaco P. (eds.) Advances in Artificial Life. Springer, Berlin: 406–420. https://cepa.info/3938
In this paper we present a new model for the mechanism underlying what is traditionally known in immunology as the “selfnonself” distinction. It turns out that in operational terms, the distinction effected by this model of the immune system is between a sufficiently numerous set of antigens present from the start of the ontogeny of the system on the one hand, and isolated antigens first introduced after the system has reached maturity on the other. The coincidence between this “founder versus late” distinction and the traditional “somatic self-foreign pathogen” one is essentially contingent, an example of the purely opportunistic tinkering characteristic of biological organization in general. We conclude that the so-called “self-nonself” distinction in immunology is a misleading misnomer. This raises the question as to what would genuinely count as a “self-nonself” distinction, a fundamental question for biology in general and Artificial Life in particular.
Chemero A. (1998) A stroll through the worlds of animats and humans: Review of Andy Clark’s Being there. Psyche 4: 24. https://cepa.info/2265
Review of: Andy Clark (1997) Being There: Putting Brain, Body and World Together Again. MIT Press: Cambridge, Massachusetts. xiii+267pp. ISBN 0-262-03240-6. Price: $US12 pbk.
Clarke B. (2012) Autopoiesis and the planet. In: Sussman H. (ed.) Impasses of the post-global theory in the era of climate change. Volume 2. Open Humanities Press, Ann Arbor: 58–75. https://cepa.info/6171
Excerpt: From its inception in 1971 as a cybernetic theory of biological form, to its current presence on research fronts extending from immunology to Earth system science to sociology, from geobiology, artificial life, and cognitive science to a range of literary and cultural theories, the concept of autopoiesis has developed on the margins, not in the strongholds, of mainstream Anglo-American science. It may be that its persistent Continental and countercultural vogue has made it suspect there, and also, that its outsider status within this scientific academy has increased its extrascientific traffic. Additionally, as a recent Italian commentator has pointed out, “autopoiesis originated in a time-window (the early 1970s) when the world of biology was completely dominated by a vision of DNA and RNA as the holy grail of life. Alternative views about the mechanism of life didn’t have much chance of appearing in mainstream journals” (Luisi, “Autopoiesis” 179). The concept of autopoiesis is interesting, then, for its multifarious cultural history, itinerant discursive career, and contrarian stance. Moreover, it has been particularly important for enabling microbiologist Lynn Margulis to outline a second-order form of Gaia theory (see Clarke, “Neocybernetics”). Here I will connect the conceptual linkage of autopoiesis and Gaia theory to the wider discourse of self-referential systems.
Damiano L. & Cañamero L. (2012) The frontier of synthetic knowledge: Toward a constructivist science. World Futures 68(3): 171–177.
This article focuses on the frontier between the technological domain of production of artefacts and the naturalistic domain of the sciences of life and cognition. It shows that, since the 1940s, this frontier has become the place of production of an innovative kind of scientific knowledge – “synthetic knowledge.” The article describes the methodology and the main characteristics of synthetic knowledge, and formulates a hypothesis on its epistemological genealogy. Accordingly, it characterizes synthetic knowledge as one of the most advanced expressions of a heterodox tradition of research which, since the 1930s, has been promoting the development of a “non-representationalist” – “constructivist” – science.