Abraham T. H. (2002) (Physio)logical Circuits: The Intellectual Origins of the McCulloch – Pitts Neural Networks. Journal of the History of the Behavioral Sciences 38(1): 3–25. https://cepa.info/2928
This article examines the intellectual and institutional factors that contributed to the col- laboration of neuropsychiatrist Warren McCulloch and mathematician Walter Pitts on the logic of neural networks, which culminated in their 1943 publication, “A Logical Calculus of the Ideas Immanent in Nervous Activity.” Historians and scientists alike often refer to the McCulloch–Pitts paper as a landmark event in the history of cybernetics, and fundamental to the development of cognitive science and artificial intelligence. This article seeks to bring some historical context to the McCulloch–Pitts collaboration itself, namely, their intellectual and scientific orientations and backgrounds, the key concepts that contributed to their paper, and the institutional context in which their collaboration was made. Al- though they were almost a generation apart and had dissimilar scientific backgrounds, McCulloch and Pitts had similar intellectual concerns, simultaneously motivated by issues in philosophy, neurology, and mathematics. This article demonstrates how these issues converged and found resonance in their model of neural networks. By examining the intellectual backgrounds of McCulloch and Pitts as individuals, it will be shown that besides being an important event in the history of cybernetics proper, the McCulloch– Pitts collaboration was an important result of early twentieth-century efforts to apply mathematics to neurological phenomena.
Abraham T. H. (2003) Integrating Mind and Brain: Warren S. McCulloch, Cerebral Localization, and Experimental Epistemology. Endeavour 27(1): 32–38. https://cepa.info/2927
Recently, historians have focused on Warren S. McCul¬loch’s role in the cybernetics movement during the 1940s and 1950s, and his contributions to the develop¬ment of computer science and communication theory. What has received less attention is McCulloch’s early work in neurophysiology, and its relationship to his philosophical quest for an ‘experimental epistemology’ – a physiological theory of knowledge. McCulloch’s early laboratory work during the 1930s addressed the problem of cerebral localization: localizing aspects of behaviour in the cerebral cortex of the brain. Most of this research was done with the Dutch neurophysiolo¬gist J. G. Dusser de Barenne at Yale University. The con¬nection between McCulloch’s philosophical interests and his experimental work can be expressed as a search for a physiological a priori, an integrated mechanism of sensation.
Abraham T. H. (2012) Transcending disciplines: Scientific styles in studies of the brain in mid-twentieth century America. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 43(2): 552–568. https://cepa.info/3935
Much scholarship in the history of cybernetics has focused on the far-reaching cultural dimensions of the movement. What has garnered less attention are efforts by cyberneticians such as Warren McCulloch and Norbert Wiener to transform scientific practice in an array of disciplines in the biomedical sciences, and the complex ways these efforts were received by members of traditional disciplines. In a quest for scientific unity that had a decidedly imperialistic flavour, cyberneticians sought to apply practices common in the exact sciences – mainly theoretical modeling – to problems in disciplines that were traditionally defined by highly empirical practices, such as neurophysiology and neuroanatomy. Their efforts were met with mixed, often critical responses. This paper attempts to make sense of such dynamics by exploring the notion of a scientific style and its usefulness in accounting for the contrasts in scientific practice in brain research and in cybernetics during the 1940s. Focusing on two key institutional contexts of brain research and the role of the Rockefeller and Macy Foundations in directing brain research and cybernetics, the paper argues that the conflicts between these fields were not simply about experiment vs. theory but turned more closely on the questions that defined each area and the language used to elaborate answers.
Excerpt: In 1995, the Leo Apostel Centre in Brussels, Belgium, organised an international conference called “Einstein meets Magritte”. Nobel prize winner Ilya Prigogine held the opening lecture at the conference, and Heinz von Foerster’s lecture was scheduled last… Heinz von Foerster was enchanted by the conference theme and – in the spirit of surrealist Belgian painter René Magritte – had chosen an appropriate title for his talk: “Ceci n’est pas Albert Einstein”. … [H]e was delighted to grant the organisers the following interview, in which he tells us about an even longer journey – that of his remarkable life and scientific career.
Agrawalla R. K. (2015) When Newton meets Heinz Von Foerster, complexity vanishes and simplicity reveals. Kybemetes 44(8/9): 1193–1206. https://cepa.info/6256
Purpose: Complexity is the real beast that baffles everybody. Though there are increasing inter-disciplinary discussions on it, yet it is scantly explored. The purpose of this paper is to bring a new and unique dimension to the discourse assimilating the important ideas of two towering scientists of their time, Newton and Heinz von Foerster. In the tradition of Foersterian second-order cybernetics the paper attempts to build a bridge from a cause-effect thinking to a thinking oriented towards “understanding understanding” and in the process presents a model of “Cybernetics of Simplification” indicating a path to simplicity from complexity. Design/methodology/approach – The design of research in the paper is exploratory and the paper takes a multidisciplinary approach. The model presented in the paper builds on analytics and systemics at the same time. Findings: Simplicity can be seen in complex systems or situations if one can construct the reality (be that the current one that is being experienced or perceived or the future one that is being desired or envisaged) through the Cybernetics of Simplification model, establishing the effect-cause-and-effect and simultaneously following the frame of iterate and infer as a circular feedback loop; in the tradition of cybernetics of cybernetics. Research limitations/implications – It is yet to be applied. Practical implications: The model in the paper seems to have far reaching implications for complex problem solving and enhancing understanding of complex situations and systems. Social implications – The paper has potential to provoke new ideas and new thinking among scholars of complexity. Originality/value – The paper presents an original idea in terms of Cybernetics of Simplification building on the cybernetics of the self-observing system. The value lies in the unique perspective that it brings to the cybernetics discussions on complexity and simplification.
In philosophy, there is an as yet unresolved discussion on whether there are different kinds of kinds and what those kinds are. In particular, there is a distinction between indifferent kinds, which are unaffected by observation and representation, and interactive kinds, which respond to being studied in ways that alter the very kinds under study. This is in essence a discussion on ontologies and, I argue, more precisely about ontological levels. The discussion of kinds of kinds can be resolved by using a semiotic approach to ontological levels, building on the key semiotic concept of representation. There are three, and only three, levels of semiosis: nonor protosemiotic processes without representation, such as physical or causal processes, semiotic processes with representation, such as the processes of life and cognition, and second-order semiotic processes with representation of representation, such as self-awareness and self-reflexive communication. This leads to the distinction between not two, but three kinds of kinds: indifferent, adaptive and reflexive kinds, of which the last two hitherto have not been clearly distinguished.
Alrøe H. F. & Noe E. (2014) Second-Order Science of Interdisciplinary Research: A Polyocular Framework for Wicked Problems. Constructivist Foundations 10(1): 65–76. https://cepa.info/1166
Context: The problems that are most in need of interdisciplinary collaboration are “wicked problems,” such as food crises, climate change mitigation, and sustainable development, with many relevant aspects, disagreement on what the problem is, and contradicting solutions. Such complex problems both require and challenge interdisciplinarity. Problem: The conventional methods of interdisciplinary research fall short in the case of wicked problems because they remain first-order science. Our aim is to present workable methods and research designs for doing second-order science in domains where there are many different scientific knowledges on any complex problem. Method: We synthesize and elaborate a framework for second-order science in interdisciplinary research based on a number of earlier publications, experiences from large interdisciplinary research projects, and a perspectivist theory of science. Results: The second-order polyocular framework for interdisciplinary research is characterized by five principles. Second-order science of interdisciplinary research must: 1. draw on the observations of first-order perspectives, 2. address a shared dynamical object, 3. establish a shared problem, 4. rely on first-order perspectives to see themselves as perspectives, and 5. be based on other rules than first-order research. Implications: The perspectivist insights of second-order science provide a new way of understanding interdisciplinary research that leads to new polyocular methods and research designs. It also points to more reflexive ways of dealing with scientific expertise in democratic processes. The main challenge is that this is a paradigmatic shift, which demands that the involved disciplines, at least to some degree, subscribe to a perspectivist view. Constructivist content: Our perspectivist approach to science is based on the second-order cybernetics and systems theories of von Foerster, Maruyama, Maturana & Varela, and Luhmann, coupled with embodied theories of cognition and semiotics as a general theory of meaning from von Uexküll and Peirce.
A number of observations are made about the nature of constructivism, with the suggestion that it is a less revolutionary development that has been claimed, and that some accounts imply an unwarranted disregard of the environment. The presentation is meant to be provocative and to invite discussion that may clarify the issues.
Purpose: Attention is drawn to a principle of “significance feedback” in neural nets that was devised in the encouraging ambience of the Biological Computer Laboratory and is arguably fundamental to much of the subsequent practical application of artificial neural nets. Design/methodology/approach – The background against which the innovation was made is reviewed, as well as subsequent developments. It is emphasised that Heinz von Foerster and BCL made important contributions prior to their focus on second-order cybernetics. Findings: The version of “significance feedback” denoted by “backpropagation of error” has found numerous applications, but in a restricted field, and the relevance to biology is uncertain. Practical implications: Ways in which the principle might be extended are discussed, including attention to structural changes in networks, and extension of the field of application to include conceptual processing. Originality/value – The original work was 40 years ago, but indications are given of questions that are still unanswered and avenues yet to be explored, some of them indicated by reference to intelligence as “fractal.”
Purpose: An attempt was made to establish a link between brief therapy a’ la MRI and Heinz von Foerster’s view of how we might conceive of and live in the world of our creation, at least in a social sense. Design/methodology/approach – The author relates how her encounter with Heinz von Foerster coincided with and further developed a way of thinking about and doing therapy which she found at the Mental Research Institute (MRI) in Palo Alto, California. She tries to show how Heinz the person has had a lasting effect on the way she conceives of and tries to conduct Brief Therapy a’ la MRI. Findings: She finds that using Heinz’s metaphor of dancing with the world quite useful in the elucidation of what therapy might be all about: how it might, metaphorically speaking, simply be about engaging a client or clients by dancing with them, allowing for the mutual creation of a new possibility. Originality/value – This paper was written to commemorate Heinz and for therapists in search of a therapeutic stance.