Abraham T. H. (2012) Transcending disciplines: Scientific styles in studies of the brain in mid-twentieth century America. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 43(2): 552–568. https://cepa.info/3935
Much scholarship in the history of cybernetics has focused on the far-reaching cultural dimensions of the movement. What has garnered less attention are efforts by cyberneticians such as Warren McCulloch and Norbert Wiener to transform scientific practice in an array of disciplines in the biomedical sciences, and the complex ways these efforts were received by members of traditional disciplines. In a quest for scientific unity that had a decidedly imperialistic flavour, cyberneticians sought to apply practices common in the exact sciences – mainly theoretical modeling – to problems in disciplines that were traditionally defined by highly empirical practices, such as neurophysiology and neuroanatomy. Their efforts were met with mixed, often critical responses. This paper attempts to make sense of such dynamics by exploring the notion of a scientific style and its usefulness in accounting for the contrasts in scientific practice in brain research and in cybernetics during the 1940s. Focusing on two key institutional contexts of brain research and the role of the Rockefeller and Macy Foundations in directing brain research and cybernetics, the paper argues that the conflicts between these fields were not simply about experiment vs. theory but turned more closely on the questions that defined each area and the language used to elaborate answers.
Open peer commentary on the article “Enactive Metaphorizing in the Mathematical Experience” by Daniela Díaz-Rojas, Jorge Soto-Andrade & Ronnie Videla-Reyes. Abstract: Welcoming their scholarly focus on metaphorizing, I critique Díaz-Rojas, Soto-Andrade and Videla-Reyes’s selection of the hypothetical constructs “conceptual metaphor” and “enactive metaphor” as guiding the epistemological positioning, educational design, and analytic interpretation of interactive mathematics education purporting to operationalize enactivist theory of cognition - both these constructs, I argue, are incompatible with enactivism. Instead, I draw on ecological dynamics to promote a view of metaphors as projected constraints on action, and I explain how mathematical concepts can be grounded in perceptual reorganization of motor coordination. I end with a note on how metaphors may take us astray and why that, too, is worthwhile.
Agmon E., Gates A. J., Churavy V. & Beer R. D. (2016) Exploring the space of viable configurations in a model of metabolism–boundary co-construction. Artificial Life 22(2): 153–171.
We introduce a spatial model of concentration dynamics that supports the emergence of spatiotemporal inhomogeneities that engage in metabolism–boundary co-construction. These configurations exhibit disintegration following some perturbations, and self-repair in response to others. We define robustness as a viable configuration’s tendency to return to its prior configuration in response to perturbations, and plasticity as a viable configuration’s tendency to change to other viable configurations. These properties are demonstrated and quantified in the model, allowing us to map a space of viable configurations and their possible transitions. Combining robustness and plasticity provides a measure of viability as the average expected survival time under ongoing perturbation, and allows us to measure how viability is affected as the configuration undergoes transitions. The framework introduced here is independent of the specific model we used, and is applicable for quantifying robustness, plasticity, and viability in any computational model of artificial life that demonstrates the conditions for viability that we promote.
Alhadeff-Jones M. (2008) Three generations of complexity theories: Nuances and ambiguities. Educational Philosophy and Theory 40(1): 66–82. https://cepa.info/330
The contemporary use of the term ‘complexity’ frequently indicates that it is considered a unified concept. This may lead to a neglect of the range of different theories that deal with the implications related to the notion of complexity. This paper, integrating both the English and the Latin traditions of research associated with this notion, suggests a more nuanced use of the term, thereby avoiding simplification of the concept to some of its dominant expressions only. The paper further explores the etymology of ‘complexity’ and offers a chronological presentation of three generations of theories that have shaped its uses; the epistemic and socio-cultural roots of these theories are also introduced. From an epistemological point of view, this reflection sheds light on the competing interpretations underlying the definition of what is considered as complex. Also, from an anthropological perspective it considers both the emancipatory as well as the alienating dimensions of complexity. Based on the highlighted ambiguities, the paper suggests in conclusion that contributions grounded in contemporary theories related to complexity, as well as critical appraisals of their epistemological and ethical legitimacy, need to follow the recursive feedback loops and dynamics that they constitute. In doing so, researchers and practitioners in education should consider their own practice as a learning process that does not require the reduction of the antagonisms and the complementarities that shape its own complexity.
Amamou Y. & Stewart J. (2007) Modelling enactive interaction with a perceptual supplementation device [Representations: External memory and technical artefacts]. In: Proceedings of the 4th international conference on enactive interfaces (ENACTIVE/07). Association ACROE, Grenoble: 33–36. https://cepa.info/7201
“Enactive knowledge” is distributed across all the interactions between an organism and its environment. When a human subject interacts with a computerized virtual environment, his motor acts determine sensory feedback from the machine, giving rise to sensory-motor dynamics. The traces of these interactions, which are readily retrieved from the computer, complete information concerning the user’s activities. The analysis of traces makes it possible to describe the sensory-motor dynamics, and to characterize the variety of strategies employed by the users.
Anderson M. L., Richardson M. J. & Chemero A. (2012) Eroding the boundaries of cognition: Implications of embodiment. Topics in Cognitive Science 4(4): 717–730. https://cepa.info/5572
To accept that cognition is embodied is to question many of the beliefs traditionally held by cognitive scientists. One key question regards the localization of cognitive faculties. Here we argue that for cognition to be embodied and sometimes embedded, means that the cognitive faculty cannot be localized in a brain area alone. We review recent research on neural reuse, the 1/f structure of human activity, tool use, group cognition, and social coordination dynamics that we believe demonstrates how the boundary between the different areas of the brain, the brain and body, and the body and environment is not only blurred but indeterminate. In turn, we propose that cognition is supported by a nested structure of task‐specific synergies, which are softly assembled from a variety of neural, bodily, and environmental components (including other individuals), and exhibit interaction dominant dynamics.
Aufenvenne P., Egner H. & Elverfeldt K. (2014) On Climate Change Research, the Crisis of Science and Second-order Science. Constructivist Foundations 10(1): 120–129. https://cepa.info/1179
Context: This conceptual paper tries to tackle the advantages and the limitations that might arise from including second-order science into global climate change sciences, a research area that traditionally focuses on first-order approaches and that is currently attracting a lot of media and public attention. Problem: The high profile of climate change research seems to provoke a certain dilemma for scientists: despite the slowly increasing realization within the sciences that our knowledge is temporary, tentative, uncertain, and far from stable, the public expectations towards science and scientific knowledge are still the opposite: that scientific results should prove to be objective, reliable, and authoritative. As a way to handle the uncertainty, scientists tend to produce “varieties of scenarios” instead of clear statements, as well as reports that articulate different scientific opinions about the causes and dynamics of change (e.g., the IPCC. This might leave the impression of vague and indecisive results. As a result, esteem for the sciences seems to be decreasing within public perception. Method: This paper applies second-order observation to climate change research in particular and the sciences in general. Results: Within most sciences, it is still quite unusual to disclose and discuss the epistemological foundations of the respective research questions, methods and ways to interpret data, as research proceeds mainly from some version of realistic epistemological positions. A shift towards self-reflexive second-order science might offer possibilities for a return to a “less polarized” scientific and public debate on climate change because it points to knowledge that is in principle tentative, uncertain and fragmented as well as to the theory- and observation-dependence of scientific work. Implications: The paper addresses the differences between first-order and second-order science as well as some challenges of science in general, which second-order science might address and disclose. Constructivist content: Second-order science used as observation praxis (second-order observation) for this specific field of research.
Auvray M., Lenay C. & Stewart J. (2009) Perceptual interactions in a minimalist virtual environment. New Ideas in Psychology 27: 32–47. https://cepa.info/478
Minimalism is a useful element in the constructivist arsenal against objectivism. By reducing actions and sensory feedback to a bare minimum, it becomes possible to obtain a complete description of the sensory-motor dynamics; and this in turn reveals that the object of perception does not pre-exist in itself, but is actually constituted during the process of observation. In this paper, this minimalist approach is deployed for the case of the recognition of “the Other.” It is shown that the perception of another intentional subject is based on properties that are intrinsic to the joint perceptual activity itself.
Bakken T., Hernes T. & Wiik E. (2009) Innovation and organization: An overview from the perspective of Luhmann’s autopoiesis. In: Magalhães R. & Sanchez R. (eds.) Autopoiesis in organization theory and practice. Emerald, Bingley UK: 69–88. https://cepa.info/7958
Excerpt: Can autopoietic systems not be creative and innovative? Or does the biological roots of the concept and notions such as “structural determinism” and “structural states” make it impossible to capture “the new” in the system’s dynamics’? The aim of the following discussion is to outline the theory of autopoietic systems, as it pertains to action theory and the understanding of the phenomenon of innovation. This will be elucidated by examining how systems theory combines concepts of (1) the old and the new, (2) the real and the possible, and (3) the redundant and the variable.
Barandiaran X. (2017) Autonomy and enactivism: Towards a theory of sensorimotor autonomous agency. Topoi 36(3): 409–430. https://cepa.info/4149
The concept of “autonomy,” once at the core of the original enactivist proposal in The Embodied Mind (Varela et al. in The embodied mind: cognitive science and human experience. MIT Press, Cambridge, 1991), is nowadays ignored or neglected by some of the most prominent contemporary enactivists approaches. Theories of autonomy, however, come to fill a theoretical gap that sensorimotor accounts of cognition cannot ignore: they provide a naturalized account of normativity and the resources to ground the identity of a cognitive subject in its specific mode of organization. There are, however, good reasons for the contemporary neglect of autonomy as a relevant concept for enactivism. On the one hand, the concept of autonomy has too often been assimilated into autopoiesis (or basic autonomy in the molecular or biological realm) and the implications are not always clear for a dynamical sensorimotor approach to cognitive science. On the other hand, the foundational enactivist proposal displays a metaphysical tension between the concept of operational closure (autonomy), deployed as constitutive, and that of structural coupling (sensorimotor dynamics); making it hard to reconcile with the claim that experience is sensorimotorly constituted. This tension is particularly apparent when Varela et al. propose Bittorio (a 1D cellular automata) as a model of the operational closure of the nervous system as it fails to satisfy the required conditions for a sensorimotor constitution of experience. It is, however, possible to solve these problems by re-considering autonomy at the level of sensorimotor neurodynamics. Two recent robotic simulation models are used for this task, illustrating the notion of strong sensorimotor dependency of neurodynamic patterns, and their networked intertwinement. The concept of habit is proposed as an enactivist building block for cognitive theorizing, re-conceptualizing mental life as a habit ecology, tied within an agent’s behaviour generating mechanism in coordination with its environment. Norms can be naturalized in terms of dynamic, interactively self-sustaining, coherentism. This conception of autonomous sensorimotor agency is put in contrast with those enactive approaches that reject autonomy or neglect the theoretical resources it has to offer for the project of naturalizing minds.