Inspired by Enactivist philosophy yet in dialog with it, we ask what theory of embodied cognition might best serve in articulating implications of Enactivism for mathematics education. We offer a blend of Dynamical Systems Theory and Sociocultural Theory as an analytic lens on micro-processes of action-to-concept evolution. We also illustrate the methodological utility of design-research as an approach to such theory development. Building on constructs from ecological psychology, cultural anthropology, studies of motor-skill acquisition, and somatic awareness practices, we develop the notion of an “instrumented field of promoted action”. Children operating in this field first develop environmentally coupled motor-action coordinations. Next, we introduce into the field new artifacts. The children adopt the artifacts as frames of action and reference, yet in so doing they shift into disciplinary semiotic systems. We exemplify our thesis with two selected excerpts from our videography of Grade 4–6 volunteers participating in task-based clinical interviews centered on the Mathematical Imagery Trainer for Proportion. In particular, we present and analyze cases of either smooth or abrupt transformation in learners’ operatory schemes. We situate our design framework vis-à-vis seminal contributions to mathematics education research.
Ackermann E. K. (2004) Constructing knowledge and transforming the world. In: Tokoro M. & Steels L. (eds.) A learning zone of one’s own: Sharing representations and flow in collaborative learning. IOS Press, Amsterdam: 15–37. https://cepa.info/3894
The first part of this paper examines the differences between Piaget’s constructivism, what Papert refers to as“constructionism,” and the socio-constructivist approach as portrayed by Vygotsky. All these views are developmental, and they share the notion that people actively contribute to the construction of their knowledge, by transforming their world. Yet the views also differ, each highlighting on some aspects of how children learn and grow, while leaving other questions unanswered. Attempts at integrating these views [learning through experience, through media, and through others] helps shed light on how people of different ages and venues come to make sense of their experience, and find their place – and voice – in the world. Tools, media, and cutural artifacts are the tangible forms, or mediational means, through which we make sense of our world and negociate meaning with others. In the second part of this paper, I speak to the articulations between make-believe activities and creative symbol-use as a guiding connection to rethink the aims of representations. Simulacrum and simulation, I show, play a key role besides language in helping children ground and mediate their experience in new ways. From computer-based microworlds for constructive learning (Papert’s turtle geometry, TERC’s body-syntonic graphing), to social virtual environments (MUDing). In each case, I discuss the roles of symbolic recreation, and imaginary projection (people’s abilities to build and dwell in their creations) as two powerful heuristic to keep in touch with situations, to bring what’s unknown to mind’s reach, and to explore risky ideas on safe grounds. I draw implications for education.
Affifi R. R. (2011) What weston’s spider and my shorebirds might mean for bateson’s mind: Some educational wanderings in interspecies curricula. Canadian Journal of Environmental Education 16: 46–58. https://cepa.info/999
Education has institutionalized a process that reifies cultures, ecological communities, and ultimately evolution itself. This enclosure has lessened our sensitivity to the pedagogical (eteragogical) nature of our lived relations with other people and with other living beings. By acknowledging that learning and teaching go on between species, humans can regain an eteragogical sense of the interspecies curricula within which they exist. This article explores interspecies lived curricula through a selection of ideas from ecopragmatist Anthony Weston, and cybernetician Gregory Bateson, and through lived experiences with shorebirds of Lake Ontario. Some gulls and a tern teach the author to enrich and diversify, rather than constrict, the potentiality of life. In so doing, being ecological and being educative become unified concepts. Relevance: The publication is concerned with the relational implications between humans and other species of Bateson’s cybernetic theory of learning.
Akpan J. P. & Beard L. A. (2016) Using constructivist teaching strategies to enhance academic outcomes of students with special needs. Universal Journal of Educational Research 4(2): 392–398. https://cepa.info/4701
Over the past decades many teaching strategies have been proposed by various educators to improve education of all students including students with special needs. No single one of these proposed teaching strategies meets the needs of all students. The new Every Student Succeeds Act, successor to No Child Left behind Law, which transfers oversight from federal level back to states, could be a benefactor for constructivism and special education. Educators are also optimistic that the new Every Student Succeeds Act will be better for vulnerable students in special education because it will introduce more flexibility in how individual states carry out evaluation of students and teachers. In addition, it will provide more flexibility on testing and adapt the curriculum to student’s needs. It would further reduce time and energy for students preparing for standardized tests or statewide exams. It will also end “Adequate Yearly Progress” – a measure that required schools to show test score gains. Constructivist teaching philosophy is all about accepting student autonomy where student thinking drives the lessons, where dialogue, inquiry, and puzzlement are valued and assessing student learning is in the context of teaching. It helps teachers to draw on new ideas as they make decisions about which teaching techniques are most appropriate for all students to learn. Now is the time to revisit the great debate of constructivism versus teacher-centered instruction and special education. Time has come to effectively explore our educational system and examine the core unit of the whole enterprise, the textbook, the classroom, a setting that is often dominated by teacher talk and students listen.
Alhadeff-Jones M. (2008) Three generations of complexity theories: Nuances and ambiguities. Educational Philosophy and Theory 40(1): 66–82. https://cepa.info/330
The contemporary use of the term ‘complexity’ frequently indicates that it is considered a unified concept. This may lead to a neglect of the range of different theories that deal with the implications related to the notion of complexity. This paper, integrating both the English and the Latin traditions of research associated with this notion, suggests a more nuanced use of the term, thereby avoiding simplification of the concept to some of its dominant expressions only. The paper further explores the etymology of ‘complexity’ and offers a chronological presentation of three generations of theories that have shaped its uses; the epistemic and socio-cultural roots of these theories are also introduced. From an epistemological point of view, this reflection sheds light on the competing interpretations underlying the definition of what is considered as complex. Also, from an anthropological perspective it considers both the emancipatory as well as the alienating dimensions of complexity. Based on the highlighted ambiguities, the paper suggests in conclusion that contributions grounded in contemporary theories related to complexity, as well as critical appraisals of their epistemological and ethical legitimacy, need to follow the recursive feedback loops and dynamics that they constitute. In doing so, researchers and practitioners in education should consider their own practice as a learning process that does not require the reduction of the antagonisms and the complementarities that shape its own complexity.
Alhadeff-Jones M. (2010) Challenging the limits of critique in education through Morin’s paradigm of complexity. Studies in Philosophy and Education 29(5): 477–490.
This paper is inspired by Edgar Morin’s paradigm of complexity and his constructivist and non-dualistic critique of scientific and philosophical forms of reductionism. It aims to challenge the fragmentation and the reduction framing the understanding of the notion of “critique” in educational sciences, and more broadly in the academia. Based on a review of the literature identified in French-speaking and English-speaking critical traditions in education, several factors determining the way the idea of critique is reduced are highlighted. Stressing the tacit character of those variables challenges the limits of traditional conceptions of critique in contemporary education. According to the constructivist, complex and non-dualistic position adopted, this paper illustrates the relevance of an epistemological framework integrating more systematically the conditions of emergence, the limitations, as well as the antagonistic, complementary and contradictory relationships, that connect educational theories of critique to one another. Based on this position, this paper finally suggests that a distinction be made between “hypocritique” and “hypercritique” as a semantic artifact, stressing the importance of challenging educational research and theories according to the level of complexity that one may attribute to them.
Amoonga T. (2010) The use of constructivism in teaching mathematics for understanding: A study of the challenges that hinder effective teaching of mathematics for understanding. In: L. G. C. D. M. B. & I. C. T. (eds.) EDULEARN10 Proceedings CD: Second International Conference on Education and New Learning Technologies, 5–7 July 2010, Barcelona, Spain. International Association of Technology. Education and Development (IATED), Valencia: 5010–5019.
The major purpose of this study was to investigate factors and challenges that hindered effective teaching of mathematics for understanding in senior secondary schools in the Omusati Education Region in Namibia. The study investigated how the participants dealt with identified challenges in the mathematics classrooms in selected senior secondary schools. Further, the study attempted to establish necessary support and / or training opportunities that mathematics teachers might need to ensure effective application of teaching mathematics for understanding in their regular classrooms. The sample was made up of eight senior secondary schools out of the population of 12 senior secondary schools in the Omusati Education Region. The schools were selected from the school circuits using maximum variation and random sampling techniques. Twenty out of 32 mathematics teachers from eight selected senior secondary schools in the Omusati Education Region responded to the interviews and two lessons per participant were observed. Interviews and observations were used to collect data from the 20 senior secondary school mathematics teachers with respect to teaching mathematics for understanding. Frequency tables, pie charts and bar graphs were used to analyze the data collected. The results indicated that teaching for understanding was little observed in mathematics classrooms. Part of the challenges identified were, overcrowded classrooms, lack of teaching and learning resources, lack of support from advisory teachers, and automatic promotions, among others. Mathematics teachers needed induction programmes, in-service training opportunities, and advisory services amongst others in order to be able to teach mathematics effectively. The study recommended that teaching for understanding should be researched in all subjects in Namibian classrooms and should be made clearly understood by all teachers in order to be able to use and apply it during their teaching. New teachers should be provided with induction programmes to give them support and tools at the beginning of their teaching careers. Further research on teaching for understanding should be conducted in other school subjects in Namibia in order to ensure teaching for understanding across the curriculum.
Anderson J. R., Reder L. M. & Simon H. A. (1998) Radical constructivism and cognitive psychology. Brookings Papers on Education Policy 1: 227–278. https://cepa.info/4127
Excerpt: Education has failed to show steady progress because it has shifted back and forth among simplistic positions such as the associationist and rationalist philosophies. Modern cognitive psychology provides a basis for genuine progress by careful scientific analysis that identifies those aspects of theoretical positions that contribute to student learning and those that do not. Radical constructivism serves as the current exemplar of simplistic extremism, and certain of its devotees exhibit an antiscience bias that, should it prevail, would destroy any hope for progress in education.
Apiola M.-V. (2019) Towards a Creator Mindset for Computational Thinking: Reflections on Task-Cards. Constructivist Foundations 14(3): 404–406. https://cepa.info/6064
Open peer commentary on the article “Creativity in Solving Short Tasks for Learning Computational Thinking” by Valentina Dagienė, Gerald Futschek & Gabrielė Stupurienė. Abstract: Computational thinking (CT) skills are nowadays strongly advocated for educational institutions at all levels. CT refers broadly to skills of thinking about the world from a computational perspective, however, not necessarily referring to programming skills in particular. There is still a lack of consensus about what CT means, and how CT should be taught. This open peer commentary briefly discusses some ongoing trends of CT in response to the target article, which reports development, field testing and piloting of an extensive set of new learning materials for teaching CT. Recent calls for interdisciplinary technology education, creativity and open-ended problem solving in CT are highlighted.
Apiola M.-V. & Sutinen E. (2020) Towards Constructivist Design of Artificial Intelligence: Perspectives and Ideas. Constructivist Foundations 16(1): 055–056. https://cepa.info/6812
Open peer commentary on the article “Foresight Rather than Hindsight? Future State Maximization As a Computational Interpretation of Heinz von Foerster’s Ethical Imperative” by Hannes Hornischer, Simon Plakolb, Georg Jäger & Manfred Füllsack. Abstract: As artificial intelligence (AI) continues to have a fundamental impact in our world and lives, a crucial need arises for integrating ethical and constructivist principles in the design of AI systems, and related computational thinking. We discuss aspects and examples of ethical and constructivist design of AI in the context of the target article, and especially in the domains of future-oriented ethical design and computing education.