Abramova K. & Villalobos M. (2015) The apparent (ur-)intentionality of living beings and the game of content. Philosophia 43(3): 651–668. https://cepa.info/6635
Hutto and Satne, Philosophia (2014) propose to redefine the problem of naturalizing semantic content as searching for the origin of content instead of attempting to reduce it to some natural phenomenon. The search is to proceed within the framework of Relaxed Naturalism and under the banner of teleosemiotics which places Ur-intentionality at the source of content. We support the proposed redefinition of the problem but object to the proposed solution. In particular, we call for adherence to Strict Naturalism and replace teleosemiotics with autopoietic theory of living beings. Our argument for these adjustments stems from our analysis of the flagship properties of Ur-intentionality: specificity and directedness. We attempt to show that the first property is not unique to living systems and therefore poses a problem of where to place a demarcation line for the origin of content. We then argue that the second property is a feature ascribed to living systems, not their intrinsic part and therefore does not form a good foundation for the game of naturalizing content. In conclusion we suggest that autopoietic theory can not only provide a competitive explanation of the basic responding of pre-contentful organisms but also clarify why Ur-intentionality is attributed to them in such an intuitive manner.
Aguayo C. (2019) Autopoiesis in digital learning design: Theoretical implications in education. In: Proceedings of the 2019 Conference on Artificial Life (ALIFE 2019). MIT Press, Cambridge MA: 495–496. https://cepa.info/8142
Today’s mobile and smart technologies have a key role to play in the transformative potential of educational practice. However, technology-enhanced learning processes are embedded within an inherent and unpredictable complexity, not only in the design and development of educational experiences, but also within the socio-cultural and technological contexts where users and learners reside. This represents a limitation with current mainstream digital educational practice, as digital experiences tend to be designed and developed as ‘one solution fits all’ products, and/or as ‘one-off’ events, failing to address ongoing socio-technological complexity, therefore tending to decay in meaningfulness and effectiveness over time. One ambitious solution is to confer the processes associated with the design and development of digital learning experiences with similar autopoietic properties found within living systems, in particular adaptability and self-organisation. The underpinning rationale is that, by conferring such properties to digital learning experiences, intelligent digital interventions responding to unpredictable and ever-changing socio-cultural conditions can be created, promoting meaningful learning over-time. Such an epistemological view of digital learning aims to ultimately promote a more efficient type of design and development of digital learning experiences in education. Read less
Aguilar W., Santamaría-Bonfil G., Froese T. & Gershenson C. (2014) The past, present, and future of artificial life. Frontiers in Robotics and AI 1: 8. https://cepa.info/1125
For millennia people have wondered what makes the living different from the non-living. Beginning in the mid-1980s, artificial life has studied living systems using a synthetic approach: build life in order to understand it better, be it by means of software, hardware, or wetware. This review provides a summary of the advances that led to the development of artificial life, its current research topics, and open problems and opportunities. We classify artificial life research into 14 themes: origins of life, autonomy, self-organization, adaptation (including evolution, development, and learning), ecology, artificial societies, behavior, computational biology, artificial chemistries, information, living technology, art, and philosophy. Being interdisciplinary, artificial life seems to be losing its boundaries and merging with other fields. Relevance: Artificial life has contributed to philosophy of biology and of cognitive science, thus making it an important field related to constructivism.
An der Heiden U., Roth G. & Schwegler H. (1985) Principles of self-generation and self-maintenance. Acta Biotheoretica 34: 125–138. https://cepa.info/4148
Living systems are characterized as self-generating and self-maintaining systems. This type of characterization allows integration of a wide variety of detailed knowledge in biology. The paper clarifies general notions such as processes, systems, and interactions. Basic properties of self-generating systems, i.e. systems which produce their own parts and hence themselves, are discussed and exemplified. This makes possible a clear distinction between living beings and ordinary machines. Stronger conditions are summarized under the concept of self-maintenance as an almost unique character of living systems. Finally, we discuss the far-reaching consequences that the principles of self-generation and self-maintenance have for the organization, structure, function, and evolution of singleand multi-cellular organisms.
Bäcker A. (2021) Zur Autopoiesis der Einbildungskraft [Towards the autopoiesis of imagination]. Gestalt Theory 43(2): 167–178. https://cepa.info/7444
Already in the romantic it has been assumed, that there is an existential interrelation between nature, human being and mind. According to this idea, there is a narrow interrelation of creation between literature, science, dream and reality, which should be expressed in a progressive universal poetry. Gestalt theory and the concept of autopoiesis, developed by Maturana and Varela, could be regarded as a scientific enhancement of this approach and are united in that sense. By analyses of dreams, it becomes evident, that neurobiological and mental processes are determined by the same principles of self-constitution and gestalt production. They are attending in equal measures to homeostatic conditions. The interaction of living systems with their environment as well as their evolution base on recursive reorganisation. Following this principle, imagination, speech and self-reflection are developed. The observer comes to existence by his own distinctions. Phenomenal appearance and real existence, poetry and scientific findings are results of the autopoietic organisation of living, of which we form a part.
In this article, we propose some fundamental requirements for the appearance of adaptivity. We argue that a basic metabolic organization, taken in its minimal sense, may provide the conceptual framework for naturalizing the origin of teleology and normative functionality as it appears in living systems. However, adaptivity also requires the emergence of a regulatory subsystem, which implies a certain form of dynamic decoupling within a globally integrated, autonomous system. Thus, we analyze several forms of minimal adaptivity, including the special case of motility. We go on to explain how an open-ended complexity growth of motility-based adaptive agency, namely, behavior, requires the appearance of the nervous system. Finally, we discuss some implications of these ideas for embodied robotics.
Biosemiotics is the synthesis of biology and semiotics, and its main purpose is to show that semiosis is a fundamental component of life, i.e., that signs and meaning exist in all living systems. This idea started circulating in the 1960s and was proposed independently from enquires taking place at both ends of the Scala Naturae. At the molecular end it was expressed by Howard Pattee’s analysis of the genetic code, whereas at the human end it took the form of Thomas Sebeok’s investigation into the biological roots of culture. Other proposals appeared in the years that followed and gave origin to different theoretical frameworks, or different schools, of biosemiotics. They are: (1) the physical biosemiotics of Howard Pattee and its extension in Darwinian biosemiotics by Howard Pattee and by Terrence Deacon, (2) the zoosemiotics proposed by Thomas Sebeok and its extension in sign biosemiotics developed by Thomas Sebeok and by Jesper Hoffmeyer, (3) the code biosemiotics of Marcello Barbieri and (4) the hermeneutic biosemiotics of Anton Markoš. The differences that exist between the schools are a consequence of their different models of semiosis, but that is only the tip of the iceberg. In reality they go much deeper and concern the very nature of the new discipline. Is biosemiotics only a new way of looking at the known facts of biology or does it predict new facts? Does biosemiotics consist of testable hypotheses? Does it add anything to the history of life and to our understanding of evolution? These are the major issues of the young discipline, and the purpose of the present paper is to illustrate them by describing the origin and the historical development of its main schools.
The attempt to define living systems in terms of goal, purpose, function, etc. runs into serious conceptual difficulties. The theoretical biologists Humberto Maturana and Francisco Varela realized that any such attempt cannot capture what is distinctive about them: their autonomy and unity. Goal, purpose, etc. always define the system in terms of something extrinsic, whereas living systems are unique because they maintain their unitary continuity of pattern despite the ceaseless turnover of their components. So, system-closure is a prerequisite of their adequate conceptual comprehension. Maturana and Varela themselves found that system-closure pertains exclusively to their organization, i.e. the set of relations among system-components which unify them. For living systems this comprises the relation between the system-components and the processes which they undergo. This relation is self-referential because it is closed, i.e. it essentially (re)produces itself. \\While this model worked very well in the biological domain, attempts to extend it to the social domain met with serious conceptual obstacles. The reason for this is that Maturana did not make a consistent enough application of it. He understood the components of social systems biologically (individuals, persons, etc.) and the relations between them socially (language). This inconsistency ruptured the system’s organizational closure. Consequently organizational closure (autopoiesis) can be maintained only when both the components of social systems and their processes are of the same type: social. This interpretation can be found in the work of Niklas Luhmann who recognizes that the components of social systems are not persons, individuals, actors or subjects but communicative actions themselves. This preserves the organizational closure of the system and permits the concept of autopoiesis to be used as a powerful instrument of social analysis.
Maturana and Varela’s concept of autopoiesis defines the essential organization of living systems and serves as a foundation for their biology of cognition and the enactive approach to cognitive science. As an initial step toward a more formal analysis of autopoiesis, this paper investigates its application to the compact, recurrent spatiotemporal patterns that arise in Conway’s Game of Life cellular automata. In particular, we demonstrate how such entities can be formulated as self-constructing networks of interdependent processes that maintain their own boundaries. We then characterize the specific organizations of several such entities, suggest a way to simplify the descriptions of these organizations, and briefly consider the transformation of such organizations over time. Relevance: The paper presents an analysis of a minimal concrete model of autopoiesis to provide a more rigorous foundation for the concept of autopoiesis and highlight its ambiguities and difficulties.
Bich L. (2016) Systems and organizations: Theoretical tools, conceptual distinctions and epistemological implications. In: Minati G., Ambram M. & Pessa E. (eds.) Towards a post-Bertalanffy systemics. Springer, New York: 203–209. https://cepa.info/3666
The aim of this paper is to present some system-theoretical notions – such as constraint, closure, integration, coordination, etc. – which have recently raised a renovated interest and have undergone a deep development, especially in those branches of philosophy of biology characterized by a systemic approach. The implications of these notions for the analysis and characterization of self-maintaining organizations will be discussed with the aid of examples taken from models of minimal living systems, and some conceptual distinctions will be provided. In the last part of the paper the epistemic implications of these ideas will be presented.