Perception and perceptual decision-making are strongly facilitated by prior knowledge about the probabilistic structure of the world. While the computational benefits of using prior expectation in perception are clear, there are myriad ways in which this computation can be realized. We review here recent advances in our understanding of the neural sources and targets of expectations in perception. Furthermore, we discuss Bayesian theories of perception that prescribe how an agent should integrate prior knowledge and sensory information, and investigate how current and future empirical data can inform and constrain computational frameworks that implement such probabilistic integration in perception.
Predictive processing (PP) is now a prominent theoretical framework in the philosophy of mind and cognitive science. This review focuses on PP research with a relatively philosophical focus, taking stock of the framework and discussing new directions. The review contains an introduction that describes the full PP toolbox; an exploration of areas where PP has advanced understanding of perceptual and cognitive phenomena; a discussion of PP’s impact on foundational issues in cognitive science; and a consideration of the philosophy of science of PP. The overall picture is that PP is a fruitful framework, with exciting new directions awaiting exploration.
Binocular rivalry occurs when the eyes are presented with different stimuli and subjective perception alternates between them. Though recent years have seen a number of models of this phenomenon, the mechanisms behind binocular rivalry are still debated and we still lack a principled understanding of why a cognitive system such as the brain should exhibit this striking kind of behaviour. Furthermore, psychophysical and neurophysiological (single cell and imaging) studies of rivalry are not unequivocal and have proven difficult to reconcile within one framework. This review takes an epistemological approach to rivalry that considers the brain as engaged in probabilistic unconscious perceptual inference about the causes of its sensory input. We describe a simple empirical Bayesian framework, implemented with predictive coding, which seems capable of explaining binocular rivalry and reconciling many findings. The core of the explanation is that selection of one stimulus, and subsequent alternation between stimuli in rivalry occur when: (i) there is no single model or hypothesis about the causes in the environment that enjoys both high likelihood and high prior probability and (ii) when one stimulus dominates, the bottom–up, driving signal for that stimulus is explained away while, crucially, the bottom–up signal for the suppressed stimulus is not, and remains as an unexplained but explainable prediction error signal. This induces instability in perceptual dynamics that can give rise to perceptual transitions or alternations during rivalry.