Abbott M. L. & Fouts J. T. (2003) Constructivist teaching and student achievement: The results of a school level classroom observation study in Washington. Technical Report #5. Washington School Research Center, Lynnwood WA. https://cepa.info/4658
This study built on a 2001–02 classroom observation study of Washington K-12 and technical schools that identified the extent of constructivist teaching activity. Results from classroom observations found that strong constructivist teaching was observable in 17 percent of the classroom lessons. The other 83 percent of the lessons observed may have contained some elements of constructivist teaching, but up to one-half had very little or no elements of constructivist teaching present. More constructivist teaching appeared to occur in alternative schools and integrated subject matter classes. There appeared to be no differences among elementary, middle/junior, and high schools in the degree to which constructivist practices were used. This study explored the relationship of this practice to student achievement, examining the percent of variance in student achievement accounted for by constructivist teaching beyond that contributed by low-income. Data came from the original observation study and from school-level standardized test scores of 4th, 7th, and 10th graders. Results found large correlations between study variables (a negative correlation between school-level family income and student achievement, large positive correlations between constructivist teaching and student achievement, and a negative correlation between constructivist teaching and school-level family income).
Abraham T. H. (2012) Transcending disciplines: Scientific styles in studies of the brain in mid-twentieth century America. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 43(2): 552–568. https://cepa.info/3935
Much scholarship in the history of cybernetics has focused on the far-reaching cultural dimensions of the movement. What has garnered less attention are efforts by cyberneticians such as Warren McCulloch and Norbert Wiener to transform scientific practice in an array of disciplines in the biomedical sciences, and the complex ways these efforts were received by members of traditional disciplines. In a quest for scientific unity that had a decidedly imperialistic flavour, cyberneticians sought to apply practices common in the exact sciences – mainly theoretical modeling – to problems in disciplines that were traditionally defined by highly empirical practices, such as neurophysiology and neuroanatomy. Their efforts were met with mixed, often critical responses. This paper attempts to make sense of such dynamics by exploring the notion of a scientific style and its usefulness in accounting for the contrasts in scientific practice in brain research and in cybernetics during the 1940s. Focusing on two key institutional contexts of brain research and the role of the Rockefeller and Macy Foundations in directing brain research and cybernetics, the paper argues that the conflicts between these fields were not simply about experiment vs. theory but turned more closely on the questions that defined each area and the language used to elaborate answers.
Abrahamson D. (2009) Embodied design: Constructing means for constructing meaning. Educational Studies in Mathematics 70(1): 27–47. https://cepa.info/8084
Design-based research studies are conducted as iterative implementation-analysis-modification cycles, in which emerging theoretical models and pedagogically plausible activities are reciprocally tuned toward each other as a means of investigating conjectures pertaining to mechanisms underlying content teaching and learning. Yet this approach, even when resulting in empirically effective educational products, remains under-conceptualized as long as researchers cannot be explicit about their craft and specifically how data analyses inform design decisions. Consequentially, design decisions may appear arbitrary, design methodology is insufficiently documented for broad dissemination, and design practice is inadequately conversant with learning-sciences perspectives. One reason for this apparent under-theorizing, I propose, is that designers do not have appropriate constructs to formulate and reflect on their own intuitive responses to students’ observed interactions with the media under development. Recent socio-cultural explication of epistemic artifacts as semiotic means for mathematical learners to objectify presymbolic notions (e.g., Radford, Mathematical Thinking and Learning 5(1): 37–70, 2003) may offer design-based researchers intellectual perspectives and analytic tools for theorizing design improvements as responses to participants’ compromised attempts to build and communicate meaning with available media. By explaining these media as potential semiotic means for students to objectify their emerging understandings of mathematical ideas, designers, reciprocally, create semiotic means to objectify their own intuitive design decisions, as they build and improve these media. Examining three case studies of undergraduate students reasoning about a simple probability situation (binomial), I demonstrate how the semiotic approach illuminates the process and content of student reasoning and, so doing, explicates and possibly enhances design-based research methodology.
Abrahamson D., Dutton E. & Bakker A. (2021) Towards an enactivist mathematics pedagogy. In: Stolz S. A. (ed.) The body, embodiment, and education: An interdisciplinary approach. Routledge, London: 156–182. https://cepa.info/7085
Enactivism theorizes thinking as situated doing. Mathematical thinking, specifically, is handling imaginary objects, and learning is coming to perceive objects and reflecting on this activity. Putting theory to practice, Abrahamson’s embodied-design collaborative interdisciplinary research program has been designing and evaluating interactive tablet applications centered on motor-control tasks whose perceptual solutions then form the basis for understanding mathematical ideas (e.g., proportion). Analysis of multimodal data of students’ handand eyemovement as well as their linguistic and gestural expressions has pointed to the key role of emergent perceptual structures that form the developmental interface between motor coordination and conceptual articulation. Through timely tutorial intervention or peer interaction, these perceptual structures rise to the students’ discursive consciousness as “things” they can describe, measure, analyze, model, and symbolize with culturally accepted words, diagrams, and signs – they become mathematical entities with enactive meanings. We explain the theoretical background of enactivist mathematics pedagogy, demonstrate its technological implementation, list its principles, and then present a case study of a mathematics teacher who applied her graduate-school experiences in enactivist inquiry to create spontaneous classroom activities promoting student insight into challenging concepts. Students’ enactment of coordinated movement forms gave rise to new perceptual structures modeled as mathematical content.
Abrahamson D., Flood V. J., Miele J. A. & Siu Y.-T. (2019) Enactivism and ethnomethodological conversation analysis as tools for expanding Universal Design for Learning: The case of visually impaired mathematics students. ZDM 51(2): 291–303. https://cepa.info/8262
Blind and visually impaired mathematics students must rely on accessible materials such as tactile diagrams to learn mathematics. However, these compensatory materials are frequently found to offer students inferior opportunities for engaging in mathematical practice and do not allow sensorily heterogenous students to collaborate. Such prevailing problems of access and interaction are central concerns of Universal Design for Learning (UDL), an engineering paradigm for inclusive participation in cultural praxis like mathematics. Rather than directly adapt existing artifacts for broader usage, UDL process begins by interrogating the praxis these artifacts serve and then radically re-imagining tools and ecologies to optimize usability for all learners. We argue for the utility of two additional frameworks to enhance UDL efforts: (a) enactivism, a cognitive-sciences view of learning, knowing, and reasoning as modal activity; and (b) ethnomethodological conversation analysis (EMCA), which investigates participants’ multimodal methods for coordinating action and meaning. Combined, these approaches help frame the design and evaluation of opportunities for heterogeneous students to learn mathematics collaboratively in inclusive classrooms by coordinating perceptuo-motor solutions to joint manipulation problems. We contextualize the thesis with a proposal for a pluralist design for proportions, in which a pair of students jointly operate an interactive technological device.
Abrahamson D., Nathan M. J., Williams-Pierce C., Walkington C., Ottmar E. R., Soto H. & Alibali M. W. (2020) The future of embodied design for mathematics teaching and learning. Frontiers in Education 5: 147. https://cepa.info/7086
A rising epistemological paradigm in the cognitive sciences – embodied cognition – has been stimulating innovative approaches, among educational researchers, to the design and analysis of STEM teaching and learning. The paradigm promotes theorizations of cognitive activity as grounded, or even constituted, in goal-oriented multimodal sensorimotor phenomenology. Conceptual learning, per these theories, could emanate from, or be triggered by, experiences of enacting or witnessing particular movement forms, even before these movements are explicitly signified as illustrating target content. Putting these theories to practice, new types of learning environments are being explored that utilize interactive technologies to initially foster student enactment of conceptually oriented movement forms and only then formalize these gestures and actions in disciplinary formats and language. In turn, new research instruments, such as multimodal learning analytics, now enable researchers to aggregate, integrate, model, and represent students’ physical movements, eye-gaze paths, and verbal–gestural utterance so as to track and evaluate emerging conceptual capacity. We – a cohort of cognitive scientists and design-based researchers of embodied mathematics – survey a set of empirically validated frameworks and principles for enhancing mathematics teaching and learning as dialogic multimodal activity, and we synthetize a set of principles for educational practice.
Agostini E. & Francesconi D. (2021) Introduction to the special issue “embodied cognition and education”. Phenomenology and the Cognitive Sciences 20: 417–422. https://cepa.info/8144
This special issue focuses on the theoretical, empirical and practical integrations between embodied cognition theory (EC) and educational science. The key question is: Can EC constitute a new theoretical framework for educational science and practice? The papers of the special issue support the efforts of those interested in the role of EC in education and in the epistemological convergence of EC and educational science. They deal with a variety of relevant topics in education and offer a focus on the role of the body and embodied experience in learning and educational settings. In conclusion, some further topics are suggested that will need to be investigated in the future, such as a critical evaluation of the possibility for an epistemological alliance between educational theory and embodied cognition, and the contribution that enactive cognition can provide to educational systems, organizations, institutions and policies.
Aguayo C. (2019) Autopoiesis in digital learning design: Theoretical implications in education. In: Proceedings of the 2019 Conference on Artificial Life (ALIFE 2019). MIT Press, Cambridge MA: 495–496. https://cepa.info/8142
Today’s mobile and smart technologies have a key role to play in the transformative potential of educational practice. However, technology-enhanced learning processes are embedded within an inherent and unpredictable complexity, not only in the design and development of educational experiences, but also within the socio-cultural and technological contexts where users and learners reside. This represents a limitation with current mainstream digital educational practice, as digital experiences tend to be designed and developed as ‘one solution fits all’ products, and/or as ‘one-off’ events, failing to address ongoing socio-technological complexity, therefore tending to decay in meaningfulness and effectiveness over time. One ambitious solution is to confer the processes associated with the design and development of digital learning experiences with similar autopoietic properties found within living systems, in particular adaptability and self-organisation. The underpinning rationale is that, by conferring such properties to digital learning experiences, intelligent digital interventions responding to unpredictable and ever-changing socio-cultural conditions can be created, promoting meaningful learning over-time. Such an epistemological view of digital learning aims to ultimately promote a more efficient type of design and development of digital learning experiences in education. Read less
Aguilar-Raab C. (2021) What Changes in the Face of Aversive Experience following Mindfulness Practice? Constructivist Foundations 16(2): 221–224. https://cepa.info/6960
Open peer commentary on the article “Assessing Subjective Processes and Vulnerability in Mindfulness-based Interventions: A Mixed methods Exploratory Study” by Sebastián Medeiros, Carla Crempien, Alejandra Vásquez-Rosati, Javiera Duarte, Catherine Andreu, Álvaro I. Langer, Miguel Ibaceta, Jaime R. Silva & Diego Cosmelli Sánchez. Abstract: I focus on the impact of mindfulness practice in the face of aversive experience and argue that it is more than merely changing one’s cognitive strategy. Shifting perspective instead may be rooted in an emergent qualitatively different subjective awareness of self and phenomena - leading to a different way of relating to any kind of experience.
Alhadeff-Jones M. (2008) Promoting scientific dialogue as a lifelong learning process. In: F. Darbellay, M. Cockell, J. Billotte & F. Waldvogel (ed.) A vision of transdisciplinarity; Laying foundations for a world knowledge dialogue. Swiss Federal Institute of Technology Press / CRC Press, Lausanne: 94–102.
The aim of this paper is to reconsider some of the stakes involved in the dialogue between sciences and between scientists, considering it as a complex and critical learning process. Dialogue – as conversation, expression, performance and negotiation – can be conceived in several ways. It carries both an epistemic and an experiential side. It involves simultaneously heterogeneous theories and identities. Because it involves fragmented scientific languages, it also requires a shared vision. But above all, what seems critical to acknowledge is that dialogue is a matter of transformation. And because transformation is also a matter of learning, the promotion of dialogue between sciences should be perceived as a virtuous spiral involving: instrumental learning (to dialogue), communicational learning (what we mean by dialoguing) and emancipatory learning (to challenge our core assumptions about dialogue and sciences). Considering the evolution of sciences as a double process embedded in the production of knowledge and the self-development of researchers raises the question of how to conceive simultaneously the relationships between these two major stakes. From a practical point of view, considering scientific dialogue as a lifelong learning process would finally suggest the management of forums like the World Knowledge Dialogue (WKD) as a privileged educational opportunity to be designed following what is known about science as a social practice and about researchers as adult learners. Based on the first edition of this forum, four suggestions are finally considered: favoring heterogeneity; valorizing formal knowledge as well as lived experience; acknowledging the learning dimension involved in the process of sharing; and confronting professional experience with knowledge produced about sciences. Inspired by Edgar Morin’s constructivist and non-dualistic position, this paper explores its practical stakes by revisiting the practice of transdisciplinary research and by considering the relationships between the process of knowledge construction and researchers’ self-development as a lifelong learning process.