Abraham T. H. (2002) (Physio)logical Circuits: The Intellectual Origins of the McCulloch – Pitts Neural Networks. Journal of the History of the Behavioral Sciences 38(1): 3–25. https://cepa.info/2928
This article examines the intellectual and institutional factors that contributed to the col- laboration of neuropsychiatrist Warren McCulloch and mathematician Walter Pitts on the logic of neural networks, which culminated in their 1943 publication, “A Logical Calculus of the Ideas Immanent in Nervous Activity.” Historians and scientists alike often refer to the McCulloch–Pitts paper as a landmark event in the history of cybernetics, and fundamental to the development of cognitive science and artificial intelligence. This article seeks to bring some historical context to the McCulloch–Pitts collaboration itself, namely, their intellectual and scientific orientations and backgrounds, the key concepts that contributed to their paper, and the institutional context in which their collaboration was made. Al- though they were almost a generation apart and had dissimilar scientific backgrounds, McCulloch and Pitts had similar intellectual concerns, simultaneously motivated by issues in philosophy, neurology, and mathematics. This article demonstrates how these issues converged and found resonance in their model of neural networks. By examining the intellectual backgrounds of McCulloch and Pitts as individuals, it will be shown that besides being an important event in the history of cybernetics proper, the McCulloch– Pitts collaboration was an important result of early twentieth-century efforts to apply mathematics to neurological phenomena.
Abraham T. H. (2003) Integrating Mind and Brain: Warren S. McCulloch, Cerebral Localization, and Experimental Epistemology. Endeavour 27(1): 32–38. https://cepa.info/2927
Recently, historians have focused on Warren S. McCul¬loch’s role in the cybernetics movement during the 1940s and 1950s, and his contributions to the develop¬ment of computer science and communication theory. What has received less attention is McCulloch’s early work in neurophysiology, and its relationship to his philosophical quest for an ‘experimental epistemology’ – a physiological theory of knowledge. McCulloch’s early laboratory work during the 1930s addressed the problem of cerebral localization: localizing aspects of behaviour in the cerebral cortex of the brain. Most of this research was done with the Dutch neurophysiolo¬gist J. G. Dusser de Barenne at Yale University. The con¬nection between McCulloch’s philosophical interests and his experimental work can be expressed as a search for a physiological a priori, an integrated mechanism of sensation.
Abramova E. & Slors M. (2019) Mechanistic explanation for enactive sociality. Phenomenology and the Cognitive Sciences 18(2): 401–424. https://cepa.info/5837
In this article we analyze the methodological commitments of a radical embodied cognition (REC) approach to social interaction and social cognition, specifically with respect to the explanatory framework it adopts. According to many representatives of REC, such as enactivists and the proponents of dynamical and ecological psychology, sociality is to be explained by (1) focusing on the social unit rather than the individuals that comprise it and (2) establishing the regularities that hold on this level rather than modeling the sub-personal mechanisms that could be said to underlie social phenomena. We point out that, despite explicit commitment, such a view implies an implicit rejection of the mechanistic explanation framework widely adopted in traditional cognitive science (TCS), which, in our view, hinders comparability between REC and these approaches. We further argue that such a position is unnecessary and that enactive mechanistic explanation of sociality is both possible and desirable. We examine three distinct objections from REC against mechanistic explanation, which we dub the decomposability, causality and extended cognition worries. In each case we show that these complaints can be alleviated by either appreciation of the full scope of the mechanistic account or adjustments on both mechanistic and REC sides of the debate.
Abramova E., Slors M. & van Rooij I. (2017) Enactive mechanistic explanation of social cognition. In: Proceedings of the 39th Annual Conference of the Cognitive Science Society. Cognitive Science Society, Austin TX: 45–50. https://cepa.info/5795
In this paper we examine an enactive approach to social cog- nition, a species of radical embodied cognition typically pro- posed as an alternative to traditional cognitive science. Ac- cording to enactivists, social cognition is best explained by reference to the social unit rather than the individuals that par- ticipate in it. We identify a methodological problem in this approach, namely a lack of clarity with respect to the model of explanation it adopts. We review two complaints about a mechanistic explanatory framework, popular in traditional cognitive science, that prevent enactivists from embracing it. We argue that these complaints are unfounded and propose a conceptual model of enactive mechanistic explanation of so- cial cognition.
Recent work in cognitive science has suggested that there are actual cases in which cognitive processes extend in the physical world beyond the bounds of the brain and the body. We argue that, while transcranial cognition may be both a logical and a nomological possibility, no case has been made for its current existence. In other words, we defend a form of contingent intracranialism about the cognitive.
Agnew N. M. & Brown J. L. (1989) Foundations for a model of knowing I. Constructing reality. Canadian Psychology 30(2): 152–167. https://cepa.info/7559
Traditional views of knowledge are being challenged. An emerging “constructivist” perspective, as proposed by George Kelly, an engineer turned clinician, suggests that to a large degree we construct reality. In his “constructive alternativism” Kelly assumes that we validate our hypotheses and beliefs through subjectively construed goodness-of-fit criteria applied to perceived differences between anticipations and feedback. His model of construing is compatible with those emerging in the history and philosophy of science and in cognitive psychology. Nevertheless, constructivists must answer a perplexing question: How can fallible knowledge, constructed as it is from abstracted and incomplete representations of objects and events, capture and maintain our confidence, as it does, and furthermore prove highly functional, as it does?
Agnew N. M. & Brown J. L. (1989) Foundations for a model of knowing II. Fallible but functional knowledge. Canadian Psychology 30(2): 168–183. https://cepa.info/7560
An evolving theory known as “constructivism” challenges the traditional view of how we generate and revise knowledge. Constructivism helps address a major issue raised by modern scholars of the history and philosophy of science, and decision theory. The question is: How do we reduce the search and solution space of complex and changing environments to “mind size” (i.e., to fit our limited memory and computational capacity)? One emerging answer is that we rely heavily upon robust presuppositions and simplified representations of environmental structure. However, such constructed knowledge is likely to be highly fallible, relying as it must on impoverished data bases in the service of strong expectations or paradigms. In this paper we address two issues: Under what conditions can knowledge be highly fallible and at the same time be highly functional?; Can we make a plausible case, within this constructivist frame of reference, for realism, for knowledge that approximates “reality”?
Agostini E. & Francesconi D. (2021) Introduction to the special issue “embodied cognition and education”. Phenomenology and the Cognitive Sciences 20: 417–422. https://cepa.info/8144
This special issue focuses on the theoretical, empirical and practical integrations between embodied cognition theory (EC) and educational science. The key question is: Can EC constitute a new theoretical framework for educational science and practice? The papers of the special issue support the efforts of those interested in the role of EC in education and in the epistemological convergence of EC and educational science. They deal with a variety of relevant topics in education and offer a focus on the role of the body and embodied experience in learning and educational settings. In conclusion, some further topics are suggested that will need to be investigated in the future, such as a critical evaluation of the possibility for an epistemological alliance between educational theory and embodied cognition, and the contribution that enactive cognition can provide to educational systems, organizations, institutions and policies.
Aguilar W., Santamaría-Bonfil G., Froese T. & Gershenson C. (2014) The past, present, and future of artificial life. Frontiers in Robotics and AI 1: 8. https://cepa.info/1125
For millennia people have wondered what makes the living different from the non-living. Beginning in the mid-1980s, artificial life has studied living systems using a synthetic approach: build life in order to understand it better, be it by means of software, hardware, or wetware. This review provides a summary of the advances that led to the development of artificial life, its current research topics, and open problems and opportunities. We classify artificial life research into 14 themes: origins of life, autonomy, self-organization, adaptation (including evolution, development, and learning), ecology, artificial societies, behavior, computational biology, artificial chemistries, information, living technology, art, and philosophy. Being interdisciplinary, artificial life seems to be losing its boundaries and merging with other fields. Relevance: Artificial life has contributed to philosophy of biology and of cognitive science, thus making it an important field related to constructivism.
Alexandre F. (2017) How to Understand Brain-Body-Environment Interactions? Toward a Systemic Representationalism. Constructivist Foundations 13(1): 130–131. https://cepa.info/4415
Open peer commentary on the article “Missing Colors: The Enactivist Approach to Perception” by Adrián G. Palacios, María-José Escobar & Esteban Céspedes. Upshot: The target article discusses the influence of the enactivist account of perception in computer science, beyond subjectivism and objectivism. I suggest going one step further and introduce our VirtualEnaction platform, proposing a federative systemic view for brain-body-environment interaction for this analysis.