Excerpt: In 1995, the Leo Apostel Centre in Brussels, Belgium, organised an international conference called “Einstein meets Magritte”. Nobel prize winner Ilya Prigogine held the opening lecture at the conference, and Heinz von Foersters lecture was scheduled last… Heinz von Foerster was enchanted by the conference theme and – in the spirit of surrealist Belgian painter René Magritte – had chosen an appropriate title for his talk: “Ceci n’est pas Albert Einstein”. … [H]e was delighted to grant the organisers the following interview, in which he tells us about an even longer journey – that of his remarkable life and scientific career.
Agrawalla R. K. (2015) When Newton meets Heinz Von Foerster, complexity vanishes and simplicity reveals. Kybemetes 44(8/9): 1193–1206. https://cepa.info/6256
Purpose: Complexity is the real beast that baffles everybody. Though there are increasing inter-disciplinary discussions on it, yet it is scantly explored. The purpose of this paper is to bring a new and unique dimension to the discourse assimilating the important ideas of two towering scientists of their time, Newton and Heinz von Foerster. In the tradition of Foersterian second-order cybernetics the paper attempts to build a bridge from a cause-effect thinking to a thinking oriented towards “understanding understanding” and in the process presents a model of “Cybernetics of Simplification” indicating a path to simplicity from complexity. Design/methodology/approach – The design of research in the paper is exploratory and the paper takes a multidisciplinary approach. The model presented in the paper builds on analytics and systemics at the same time. Findings: Simplicity can be seen in complex systems or situations if one can construct the reality (be that the current one that is being experienced or perceived or the future one that is being desired or envisaged) through the Cybernetics of Simplification model, establishing the effect-cause-and-effect and simultaneously following the frame of iterate and infer as a circular feedback loop; in the tradition of cybernetics of cybernetics. Research limitations/implications – It is yet to be applied. Practical implications: The model in the paper seems to have far reaching implications for complex problem solving and enhancing understanding of complex situations and systems. Social implications – The paper has potential to provoke new ideas and new thinking among scholars of complexity. Originality/value – The paper presents an original idea in terms of Cybernetics of Simplification building on the cybernetics of the self-observing system. The value lies in the unique perspective that it brings to the cybernetics discussions on complexity and simplification.
Alrøe H. F. & Noe E. (2014) Second-Order Science of Interdisciplinary Research: A Polyocular Framework for Wicked Problems. Constructivist Foundations 10(1): 65–76. https://cepa.info/1166
Context: The problems that are most in need of interdisciplinary collaboration are “wicked problems,” such as food crises, climate change mitigation, and sustainable development, with many relevant aspects, disagreement on what the problem is, and contradicting solutions. Such complex problems both require and challenge interdisciplinarity. Problem: The conventional methods of interdisciplinary research fall short in the case of wicked problems because they remain first-order science. Our aim is to present workable methods and research designs for doing second-order science in domains where there are many different scientific knowledges on any complex problem. Method: We synthesize and elaborate a framework for second-order science in interdisciplinary research based on a number of earlier publications, experiences from large interdisciplinary research projects, and a perspectivist theory of science. Results: The second-order polyocular framework for interdisciplinary research is characterized by five principles. Second-order science of interdisciplinary research must: 1. draw on the observations of first-order perspectives, 2. address a shared dynamical object, 3. establish a shared problem, 4. rely on first-order perspectives to see themselves as perspectives, and 5. be based on other rules than first-order research. Implications: The perspectivist insights of second-order science provide a new way of understanding interdisciplinary research that leads to new polyocular methods and research designs. It also points to more reflexive ways of dealing with scientific expertise in democratic processes. The main challenge is that this is a paradigmatic shift, which demands that the involved disciplines, at least to some degree, subscribe to a perspectivist view. Constructivist content: Our perspectivist approach to science is based on the second-order cybernetics and systems theories of von Foerster, Maruyama, Maturana & Varela, and Luhmann, coupled with embodied theories of cognition and semiotics as a general theory of meaning from von Uexküll and Peirce.
Purpose: Attention is drawn to a principle of “significance feedback” in neural nets that was devised in the encouraging ambience of the Biological Computer Laboratory and is arguably fundamental to much of the subsequent practical application of artificial neural nets. Design/methodology/approach – The background against which the innovation was made is reviewed, as well as subsequent developments. It is emphasised that Heinz von Foerster and BCL made important contributions prior to their focus on second-order cybernetics. Findings: The version of “significance feedback” denoted by “backpropagation of error” has found numerous applications, but in a restricted field, and the relevance to biology is uncertain. Practical implications: Ways in which the principle might be extended are discussed, including attention to structural changes in networks, and extension of the field of application to include conceptual processing. Originality/value – The original work was 40 years ago, but indications are given of questions that are still unanswered and avenues yet to be explored, some of them indicated by reference to intelligence as “fractal.”
Purpose: An attempt was made to establish a link between brief therapy a’ la MRI and Heinz von Foersters view of how we might conceive of and live in the world of our creation, at least in a social sense. Design/methodology/approach – The author relates how her encounter with Heinz von Foerster coincided with and further developed a way of thinking about and doing therapy which she found at the Mental Research Institute (MRI) in Palo Alto, California. She tries to show how Heinz the person has had a lasting effect on the way she conceives of and tries to conduct Brief Therapy a’ la MRI. Findings: She finds that using Heinz’s metaphor of dancing with the world quite useful in the elucidation of what therapy might be all about: how it might, metaphorically speaking, simply be about engaging a client or clients by dancing with them, allowing for the mutual creation of a new possibility. Originality/value – This paper was written to commemorate Heinz and for therapists in search of a therapeutic stance.
Apiola M.-V. & Sutinen E. (2020) Towards Constructivist Design of Artificial Intelligence: Perspectives and Ideas. Constructivist Foundations 16(1): 055–056. https://cepa.info/6812
Open peer commentary on the article “Foresight Rather than Hindsight? Future State Maximization As a Computational Interpretation of Heinz von Foersters Ethical Imperative” by Hannes Hornischer, Simon Plakolb, Georg Jäger & Manfred Füllsack. Abstract: As artificial intelligence (AI) continues to have a fundamental impact in our world and lives, a crucial need arises for integrating ethical and constructivist principles in the design of AI systems, and related computational thinking. We discuss aspects and examples of ethical and constructivist design of AI in the context of the target article, and especially in the domains of future-oriented ethical design and computing education.
Asaro P. (2007) Heinz von Foerster and the bio-computing movements of the 1960s. In: Müller A. & Müller K. H. (eds.) An unfinished revolution? Heinz von Foerster and the Biological Computer Laboratory, BCL, 1959–1976. Edition Echoraum, Vienna: 253–275. https://cepa.info/6625
Excerpt: As I read the cybernetic literature, I became intrigued that as an approach to the mind which was often described as a predecessor to AI, cybernetics had a much more sophisticated approach to mind than its purported successor. I was soon led to Prof. Herbert Brün’s seminar in experimental composition, and to the archives of the Biological Computer Laboratory (BCL) in the basement of the University of Illinois library. Since then, I have been trying to come to terms with what it was that was so special about the BCL, what allowed it to produce such interesting ideas and projects which seem alien and exotic in comparison to what mainstream AI and Cognitive Science produced in the same era. And yet, despite its appealing philosophical depth and technological novelty, it seems to have been largely ignored or forgotten by mainstream research in these areas. I believe that these are the same concerns that many of the authors of the recent issue of Cybernetics and Human Knowing (Brier & Glanville, 2003) express in regard to the legacy of von Foerster and the BCL. How could such an interesting place, full of interesting things and ideas have just disappeared and been largely forgotten, even in its own home town?
Aufenvenne P., Egner H. & Elverfeldt K. (2014) Authors’ Response: Communicating Second-Order Science. Constructivist Foundations 10(1): 135–139. https://cepa.info/1184
Upshot: For communicating second-order science, von Foersters ethical imperative provides a viable starting point. Proceeding from this, we plead in favour of emphasising the common grounds of diverging scientific opinions and of various approaches in second-order science instead of focussing on the differences. This will provide a basis for communication and stimulate scientific self-reflection.
Baecker D. (1994) The intelligence of ignorance in self-referential systems. In: Trappl R. (ed.) Cybernetics and systems: Proceedings of the Twelfth European Meeting on Cybernetics and Systems Research, Vienna, Austria, 5–8 April 1994. World Scientific, Singapore: 1555–1562. https://cepa.info/7609
Self-referential systems theory does not provide for a concept of intelligence. There is even a certain resistance to intelligence that seems to block any explicit exchange of concepts with artificial systems theory. The paper describes the intelligence service in self-referential systems as the self-referential and, hence, paradoxical switching from the self-reference of these systems to other-reference. How this might work is shown by means of G. Spencer Brown’s calculus of indications and Heinz von Foersters notion of double closure.
It is characteristic of Heinz von Foersters approach to the cybernetics of cybernetics that it combines a sense of tight reasoning with the acknowledgment of fundamental ignorance. The article attempts to uncover an epistemological relationship between the reasoning and the ignorance. The relationship is provided for by a razor which reads: what can be described in relation to its composition, is described in vain in relation to its substance. The razor asks for second-order terms instead of first-order terms, or for ontogenetics instead of ontology.