Publication 1856

Umpleby S. A. (2010) From complexity to reflexivity: Underlying logics used in science. Journal of the Washington Academy of Sciences 96(1): 15–26.
Current research on complexity can be thought of as the working out of ideas related to self-organizing systems, which were developed about 1960. Much more advanced technical means are now available, and the great accomplishment of the recent research has been the involvement of people from a wide range of disciplines in using modeling methods, such as cellular automata and genetic algorithms, which are a significant departure from previous methods. Research in reflexivity is less well known. Its origins can be traced back at least to 1975. Several reflexive theories have been proposed, for example by Argyris and Schon, von Foerster, Lefebvre, and Soros. The literatures in second order cybernetics and constructivism are very close to reflexivity, but the term “reflexivity” might attract wider interest. This presentation will describe the basic features of the theories of complexity and reflexivity, their early history, their evolution, and reactions to date. Although complexity is a major change from previous modeling methods, it does not violate any informal fallacies or any assumptions underlying the philosophy of science. Reflexivity does. Accepting reflexivity as a legitimate movement in science will require an expansion of the conception of science which still prevails in most fields. A shift from Science One to Science Two is now being discussed. This presentation will explain what is being proposed.
No full textversion available. Find it on Google Google Scholar Citeseerx .
Log in to upload a fulltext version

The publication has not yet bookmarked in any reading list

You cannot bookmark this publication into a reading list because you are not member of any
Log in to create one.

There are currently no annotations

To add an annotation you need to log in first

Download statistics

Log in to view the download statistics for this publication
Export bibliographic details as: CF Format · APA · BibTex · EndNote · Harvard · MLA · Nature · RIS · Science