Publication 3632

Letelier J.-C., Cárdenas M. L. C. & Cornish-Bowden A. (2011) From L’Homme Machine to metabolic closure: Steps towards understanding life. Journal of Theoretical Biology 286: 100–113.
The nature of life has been a topic of interest from the earliest of times, and efforts to explain it in mechanistic terms date at least from the 18th century. However, the impressive development of molecular biology since the 1950s has tended to have the question put on one side while biologists explore mechanisms in greater and greater detail, with the result that studies of life as such have been confined to a rather small group of researchers who have ignored one another’s work almost completely, often using quite different terminology to present very similar ideas. Central among these ideas is that of closure, which implies that all of the catalysts needed for an organism to stay alive must be produced by the organism itself, relying on nothing apart from food (and hence chemical energy) from outside. The theories that embody this idea to a greater or less degree are known by a variety of names, including (M, R) systems, autopoiesis, the chemoton, the hypercycle, symbiosis, autocatalytic sets, sysers and RAF sets. These are not all the same, but they are not completely different either, and in this review we examine their similarities and differences, with the aim of working towards the formulation of a unified theory of life. – Highlights: There have been many isolated attempts to define the essentials of life, A major unifying feature is metabolic closure, Metabolic closure requires some molecules to fulfill more than one function, There can be no hierarchy in the overall organization of a living system.
We will upload a full textversion shortly.

The publication has not yet bookmarked in any reading list

You cannot bookmark this publication into a reading list because you are not member of any
Log in to create one.

There are currently no annotations

To add an annotation you need to log in first

Download statistics

Log in to view the download statistics for this publication
Export bibliographic details as: CF Format · APA · BibTex · EndNote · Harvard · MLA · Nature · RIS · Science