Publication 4749

Peschl M. F. (1997) The representational relation between environmental structures and neural systems: Autonomy and environmental dependency in neural knowledge representation. Nonlinear Dynamics, Psychology. and Life Sciences 1(2): 99–121.
In this paper it will be shown that in neural systems with a recurrent architecture, the traditional concepts of knowledge representation cannot be applied any more; no stable representational relationship of reference can be found. That is why a redefinition of the relationship between the states of the environment and the internal representational states is proposed. Studying the dynamics of recurrent neural systems reveals that the goal of representation is no longer to map the environment as accurately as possible to the representation system (e.g., to symbols) It is suggested that it is more appropriate to look at neural systems as physical dynamical devices embodying the (transformation) knowledge for sensorimotor integration and for generating adequate behavior enabling the organism’s survival. As an implication the representation is determined not only by the environment, but highly depends on the organization, structure, and constraints of the representation system as well as the sensory/motor systems which are embedded in a particular body structure. This leads to a system relative concept of representation. By transforming recurrent neural networks into the domain of finite automata, the dynamics as well as the epistemological implications become more clear. In recurrent neural systems a type of balance between the autonomy of the representation and the environmental dependence/influence emerges. This not only affects the traditional concept of knowledge representation, but has also implications for the understanding of semantics, language, communication, and even science.
We will upload a full textversion shortly.

The publication has not yet bookmarked in any reading list

You cannot bookmark this publication into a reading list because you are not member of any
Log in to create one.

There are currently no annotations

To add an annotation you need to log in first

Download statistics

Log in to view the download statistics for this publication
Export bibliographic details as: CF Format · APA · BibTex · EndNote · Harvard · MLA · Nature · RIS · Science