Publication 6399

Bonawitz E., Gopnik A., Denison S. & Griffiths T. L. (2012) Rational randomness: The role of sampling in an algorithmic account of preschooler’s causal learning. In: Xu F. & Kushnir T. (eds.) Advances in child development and behavior. Volume 43. Academic Press, Waltham MA: 161–191.
Probabilistic models of cognitive development indicate the ideal solutions to computational problems that children face as they try to make sense of their environment. Under this approach, children’s beliefs change as the result of a single process: observing new data and drawing the appropriate conclusions from those data via Bayesian inference. However, such models typically leave open the question of what cognitive mechanisms might allow the finite minds of human children to perform the complex computations required by Bayesian inference. In this chapter, we highlight one potential mechanism: sampling from probability distributions. We introduce the idea of approximating Bayesian inference via Monte Carlo methods, outline the key ideas behind such methods, and review the evidence that human children have the cognitive prerequisites for using these methods. As a result, we identify a second factor that should be taken into account in explaining human cognitive development the nature of the mechanisms that are used in belief revision.
We will upload a full textversion shortly.

The publication has not yet bookmarked in any reading list

You cannot bookmark this publication into a reading list because you are not member of any
Log in to create one.

There are currently no annotations

To add an annotation you need to log in first

Download statistics

Log in to view the download statistics for this publication
Export bibliographic details as: CF Format · APA · BibTex · EndNote · Harvard · MLA · Nature · RIS · Science